
The essence of type-theoretic elaboration *

Anja Petković Komel

TU Wien
anja.komel@tuwien.ac.at

When using a type theory in a proof assistant, the syntax can quickly become too verbose to handle.
Terms annotated with full typing information are easily amenable to algorithmic processing and have
good meta-theoretic properties, but more economic terms that omit typing information are much more
usable in practice.

One common solution to this problem is to design two type theories: a fully annotated type theory S
that resides in the kernel of the proof assistant and an economic one T for the users input. The latter
version is then translated to the former via an elaborator i.e., the missing information is somehow re-
covered, usually during or in parallel with type-checking. We can see this process in practice, for exam-
ple with Agda’s [Agd21] or Coq’s [Coq21] inferred implicit arguments, termination checking [Abe98]
(where evidence of termination is added), or universe polymorphism [ST14] (where explicit universe
levels are calculated and constraints checked).

The type-theoretic account of an elaboration map can be summarized in the following diagram,
which we call the "essence" of elaboration:

S T

r

`

We start with the economic type theory T (a finitary type theory as defined by Haselwarter and Bauer
in [HB21]). The fully-annotated type theory to which we elaborate is a standard type theory S [HB21],
in which all specific object rules are symbol rules that faithfully record all the premises, and thus make
the theory a good candidate for the kernel. Of course we want our economic version T to be conservative
over S, namely that for every derivable type in S, if we can provide a term of said type in T , there is
also a term of the original type.

Next there is a "forgetful" type-theoretic transformation r : S → T , called the retrogression trans-
formation, which erases the annotations, but is still conservative. It is a transformation, that works
syntactically on type-theoretic judgements, while preserving their derivability. The interesting part is in
the other direction, the so called elaboration map `, which acts as a section to the retrogression trans-
formation. But since the economic syntax does not provide sufficient information, the elaboration map
takes entire derivations in the economic type theory T and maps them to judgements in the standard
type theory S.

This definition of elaboration map enjoys two important meta-theoretic properties: every finitary
type theory has an elaboration map to a standard type theory and it satisfies a universal property, making
it unique up-to judgemental equality.

A relationship between the algorithmic content of the elaboration map and type-checking of T can
be described via the elaborator: an algorithm, that takes a (not necessarily derivable) judgement J in T
and outputs a derivable judgement J ′ in S such that r∗(J ′) = J if such J ′ exists, or reports there is
none. An elaborator for T exists if and only if T has decidable type-checking and equality-checking.

*Joint work with Andrej Bauer.



The essence of elaboration Anja Petković Komel

References
[Abe98] Andreas Abel. foetus - termination checker for simple functional programs. https://www.cse.

chalmers.se/~abela/foetus/, 1998.
[Agd21] The Agda proof assistant. https://wiki.portal.chalmers.se/agda/, 2021.
[Coq21] The Coq proof assistant, version 2021.02.2. https://coq.inria.fr/, 2021.
[HB21] Philipp G. Haselwarter and Andrej Bauer. Finitary type theories with and without contexts. Available at

https://arxiv.org/abs/2112.00539, 2021.
[ST14] Matthieu Sozeau and Nicolas Tabareau. Universe polymorphism in coq. In Gerwin Klein and Ruben

Gamboa, editors, Interactive Theorem Proving, pages 499–514, Cham, 2014. Springer International Pub-
lishing.

2

https://www.cse.chalmers.se/~abela/foetus/
https://www.cse.chalmers.se/~abela/foetus/
https://wiki.portal.chalmers.se/agda/
https://coq.inria.fr/
https://arxiv.org/abs/2112.00539

