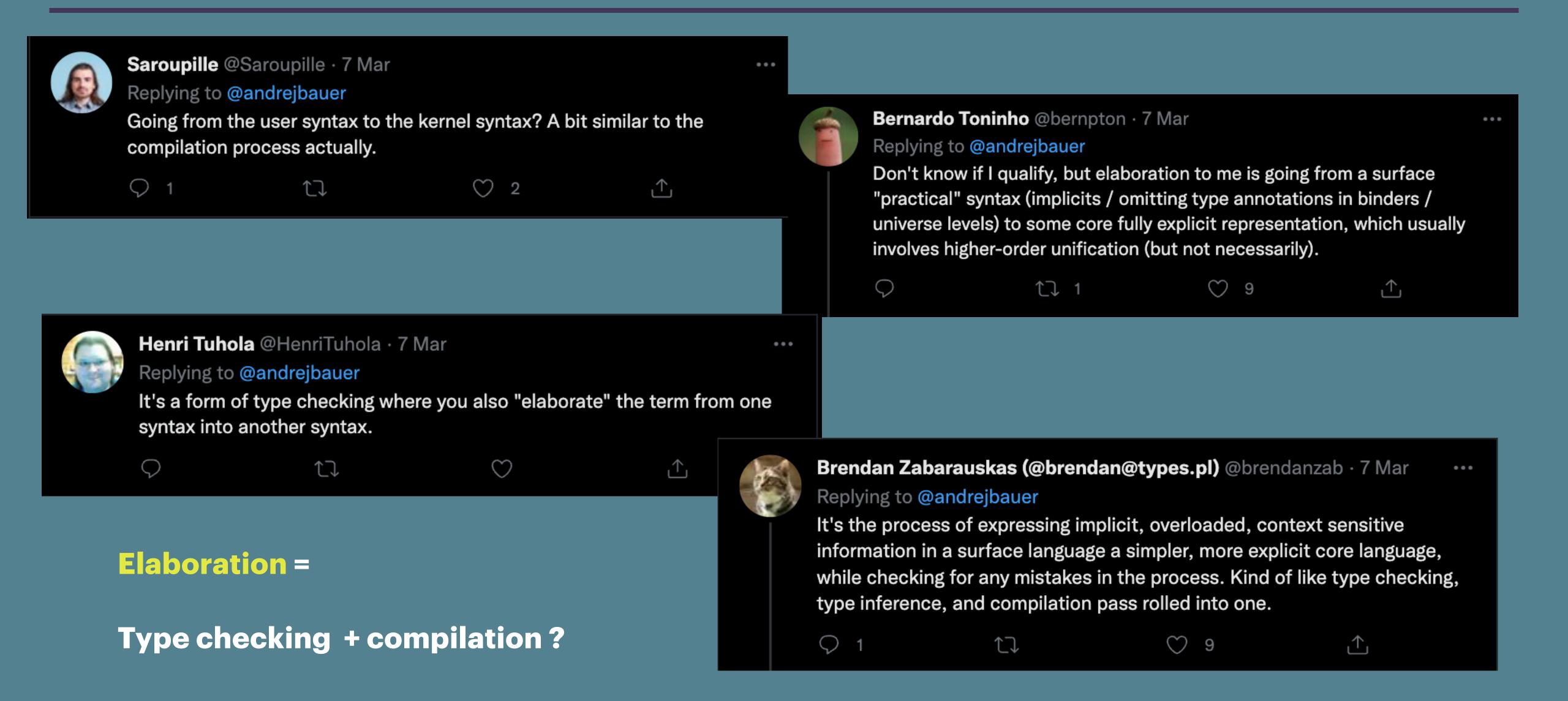
THE ESSENCE OF ELABORATION

joint work with Andrej Bauer

WHAT IS ELABORATION?



Martin Escardo @Escardo Martin · 7 Mar

 \bigcap

Replying to @andrejbauer

Elaboration is the process of trying to automatically figure out the information that the mathematician using the proof checker left out deliberately because it is considered culturally obvious in the wide mathematical community.

 \triangle

Jon Sterling @jonmsterling · 7 Mar

Replying to @andrejbauer

It is the process of transforming things that we write down or type in (e.g. raw syntax or code) into (representations of) the mathematical objects we are talking about.

1 1

Elaboration =

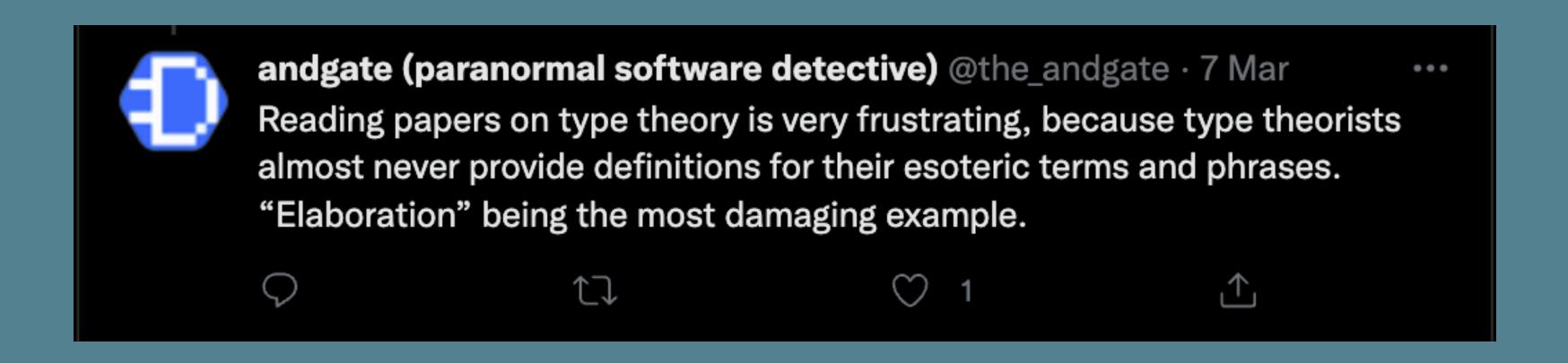
Transformation into mathematical objects?

Figuring out missing (mathematical) context information?

???

Confused, frustrated.

We don't really know.



IDEA OF ELABORATION:

Adding missing information

Adding missing types

$$\vdash$$
 A type \vdash B type $x : A \vdash e : B$ \vdash A type \vdash B type $x : A \vdash e : B$ \vdash $\lambda(A, B, x.e) : A \rightarrow B$

Adding missing evidence

(termination checker, universe levels)

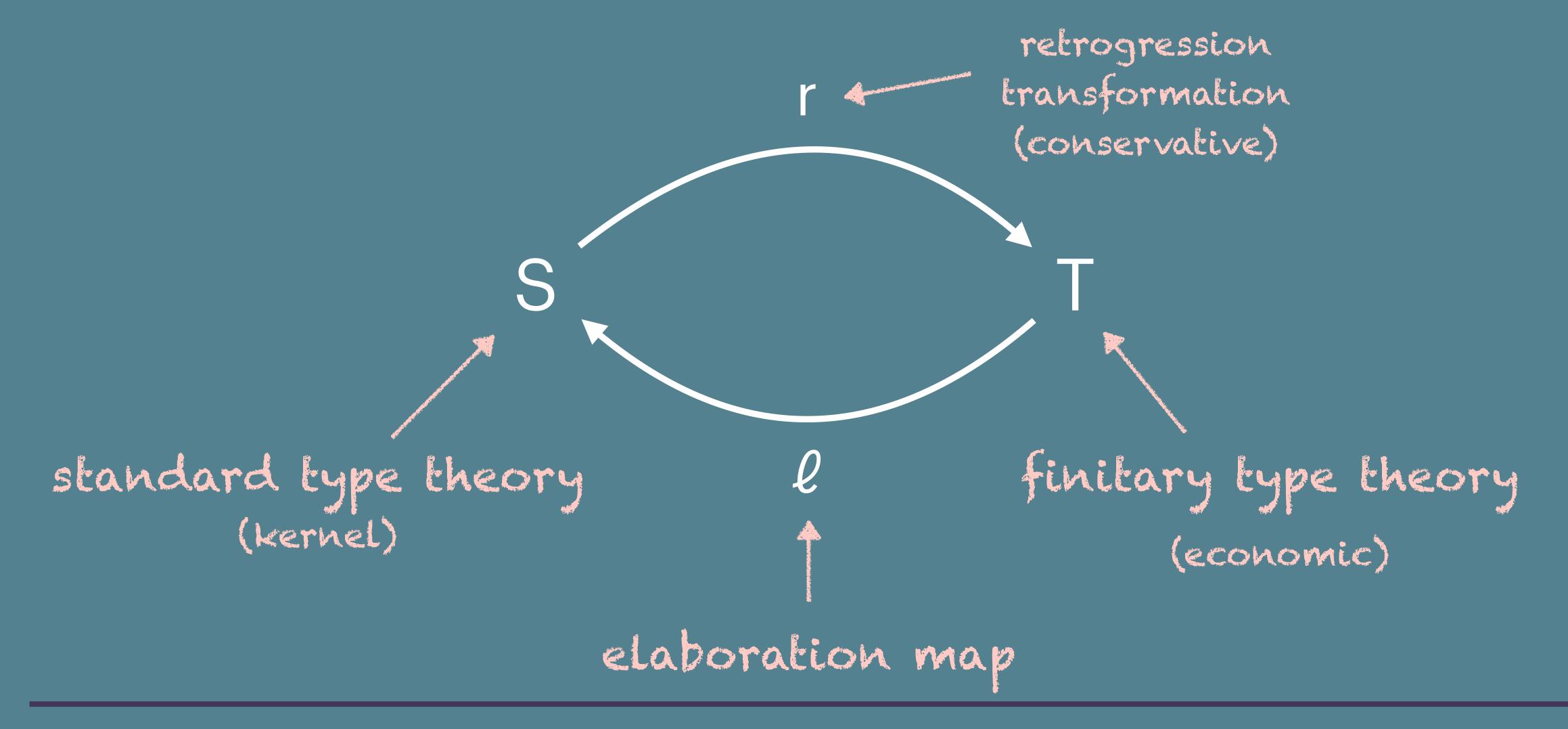
TERMINOLOGY

- **Elaboration map** a map ℓ : T → S from an economic type theory to a fully annotated type theory
- **Elaborator** an algorithm performing adding information (related to type-checking)

QUESTIONS TO ANSWER

- What are the properties of the economic syntax/type theory?
- What are the properties of the fully annotated (kernel) syntax/type theory?
- What is an elaboration map?
- What is the input and output of elaborator?
- How does elaborator relate to type checking?

THE ESSENCE OF ELABORATION



FINITARY TYPE THEORY

A finitary type theory [HB21] is a formal deductive system that consists of:

- A signature of symbols.
- 4 kinds of judgements.

$$A \equiv B by \bigstar$$

$$A \equiv B \ by \bigstar \qquad a \equiv b : A \ by \bigstar$$

Boundaries (for every judgement kind).

$$a \equiv b : A by$$

Hypothetical judgements and boundaries.

$$\Gamma \vdash \mathcal{J}$$

$$\Gamma \vdash B$$

RULES OF FINITARY TYPE THEORY

A finitary type theory [HB21] is a formal deductive system that consists of:

- Structural rules: Variable rule, reflexivity, symmetry and transitivity of equations etc.
- > Specific rules:

Object rules

$$\vdash$$
 A type \vdash B type

$$\vdash A \rightarrow B \text{ type}$$
 $\vdash A \text{ type } \vdash B \text{ type } x : A \vdash e : B$

$$\vdash \lambda(x.e) : A \rightarrow B$$

Congurence rules (for every object rule).

Equality rules

$$\vdash N \equiv \mathbb{N}$$
 $\vdash A \text{ type } \vdash B \text{ type } \vdash a : A \vdash b : B$

 \vdash fst(pair(a,b)) = a : A

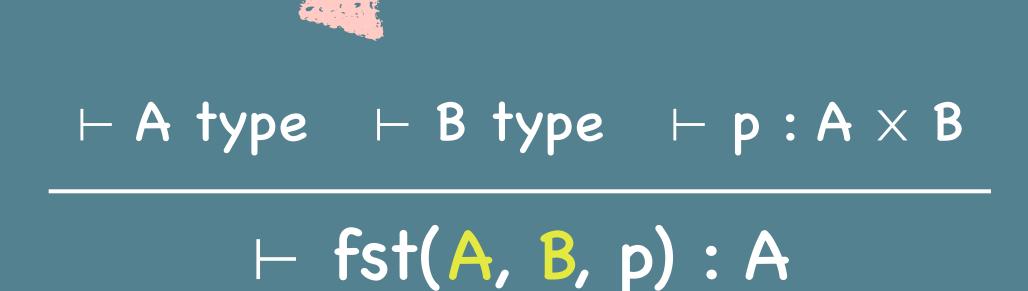
Such that the rules have well-formed boundaries (presuppositivity).

SYMBOL RULES

Compare the two rules.

$$\vdash$$
 A type \vdash B type \vdash p : A \times B \vdash fst(p) : A

Beller for user inpul.



Faithfully records the (proof-relevant parts of) the premises.

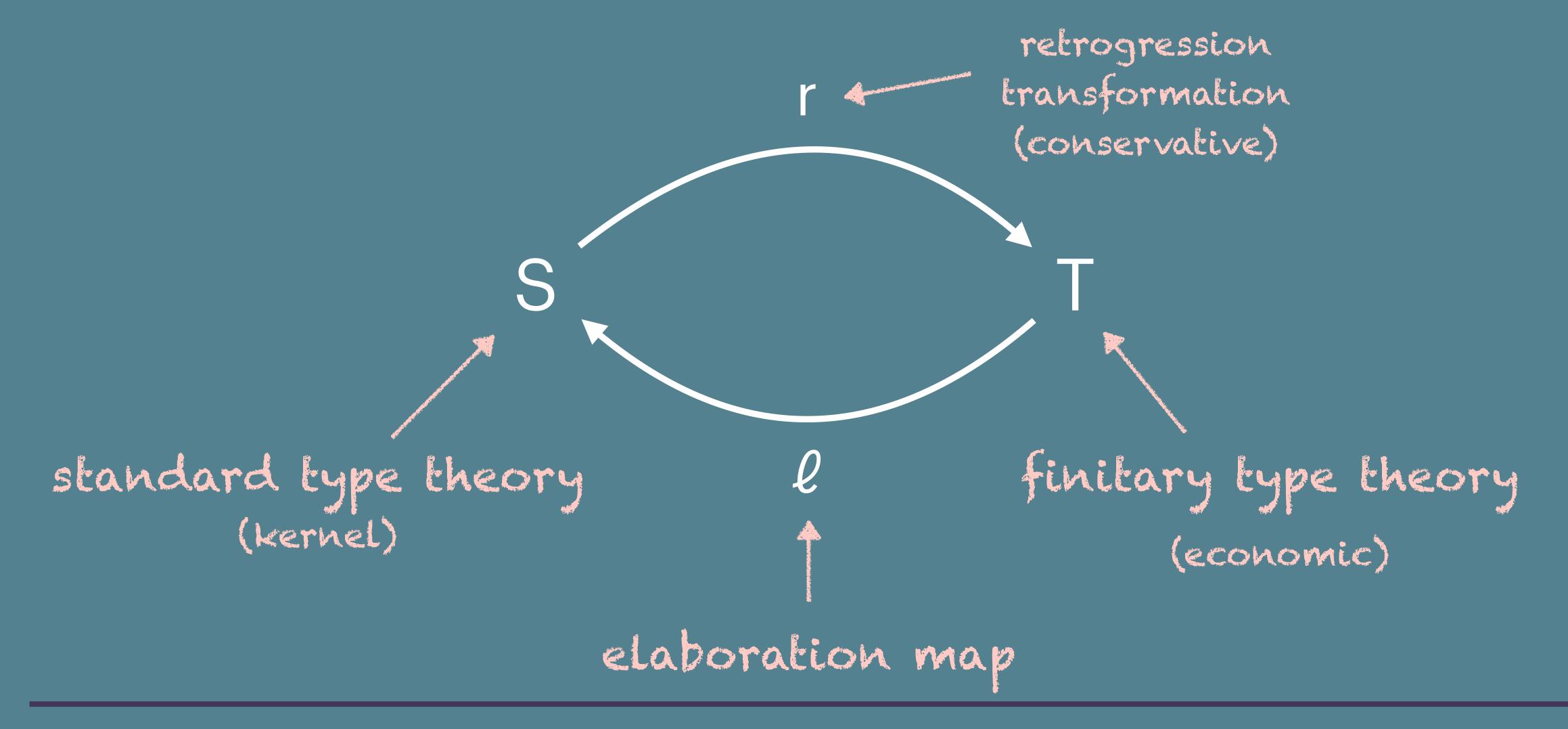
STANDARD TYPE THEORY

A type theory is standard if every object rule is a symbol rule and every symbol has exactly one symbol rule.

Standard type theories are well behaved:

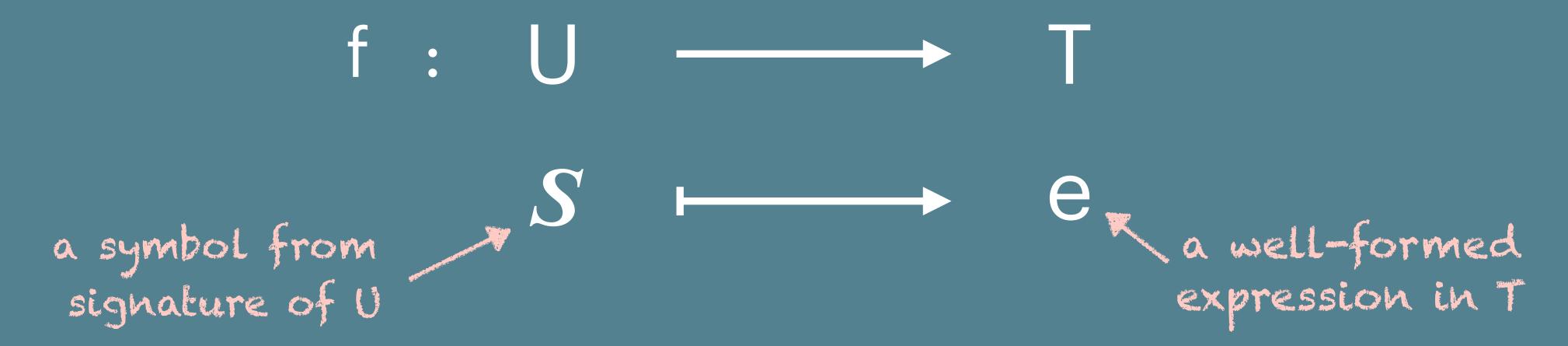
- inversion
- uniqueness of typing

THE ESSENCE OF ELABORATION



SYNTACTIC TRANSFORMATION

Recall from Andrej Bauer's talk:



The syntactic transformation f acts on expressions e' in U to produce expressions f_{*}e' in T.

Syntactic transformations form a relative monad for syntax.

TYPE-THEORETIC TRANSFORMATION

A type-theoretic transformation is a syntactic transformation $f: U \rightarrow T$ such that for every specific rule

$$P_1 \cdots P_n$$
 $\vdash \mathcal{J}$

in U there is a derivation of

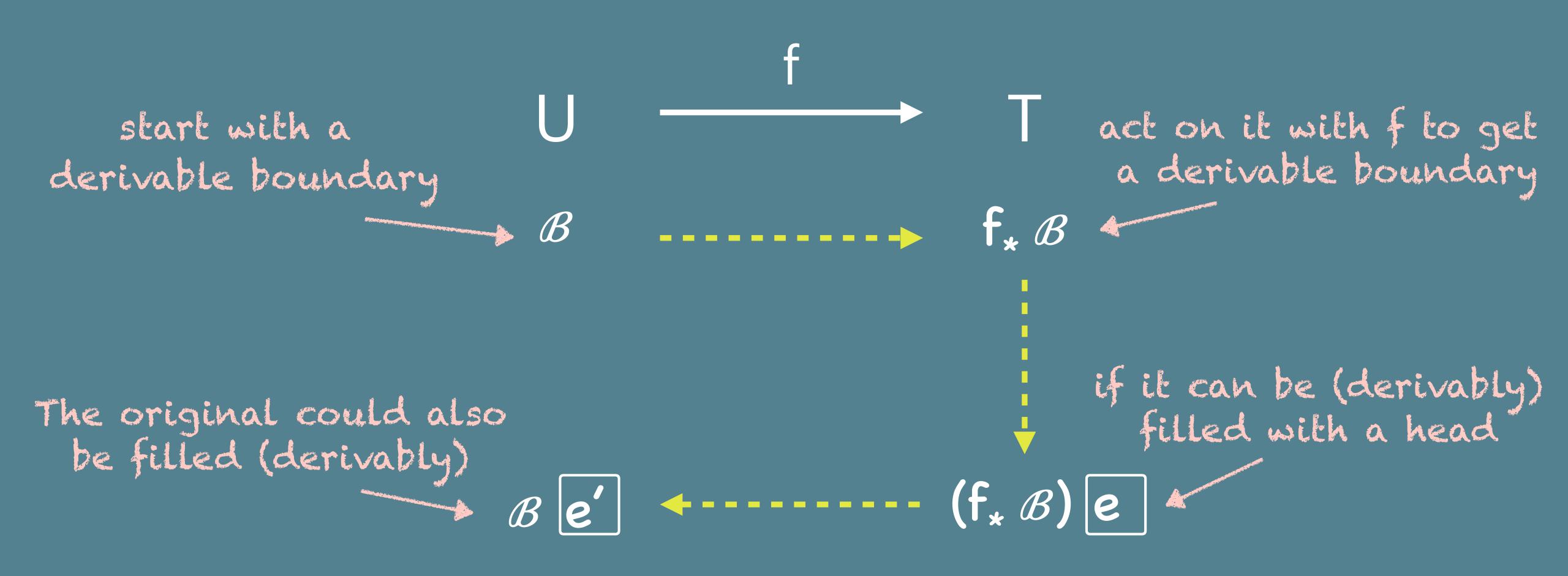
$$f_{\star} P_1 \cdots f_{\star} P_n$$
 $\vdash f_{\star} \mathcal{J}$

this is data of the transformation

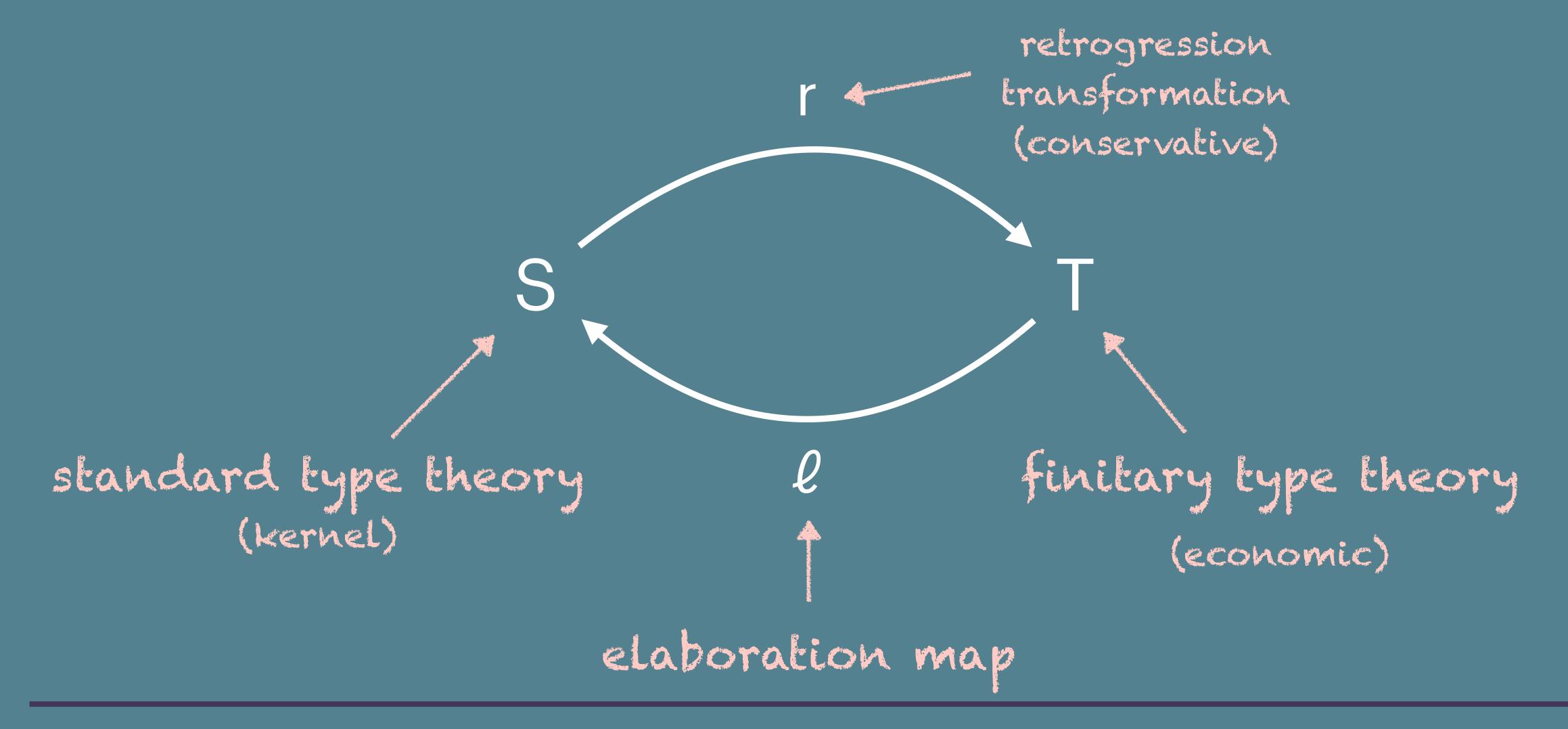
in T.

Type-theoretic transformations preserve derivability.

CONSERVATIVE TRANSFORMATION

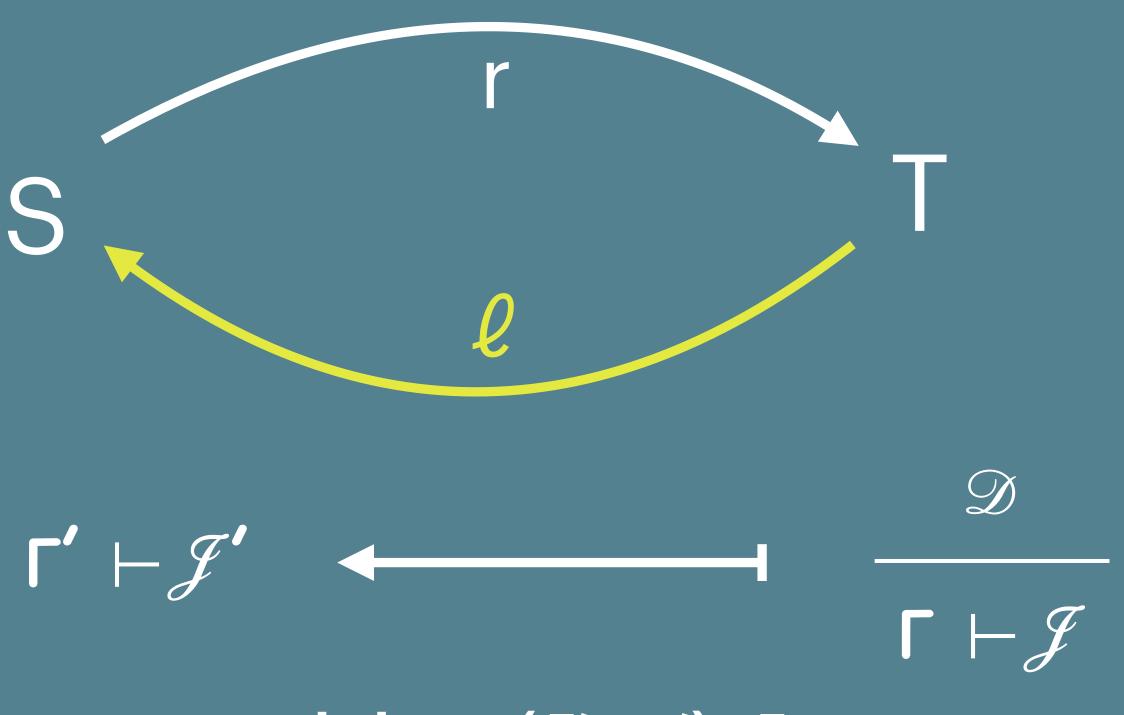


THE ESSENCE OF ELABORATION



ELABORATION MAP

Side note: elaboration map works uniformly on contexts and boundaries $\ell(\Gamma', B', \mathcal{D})$



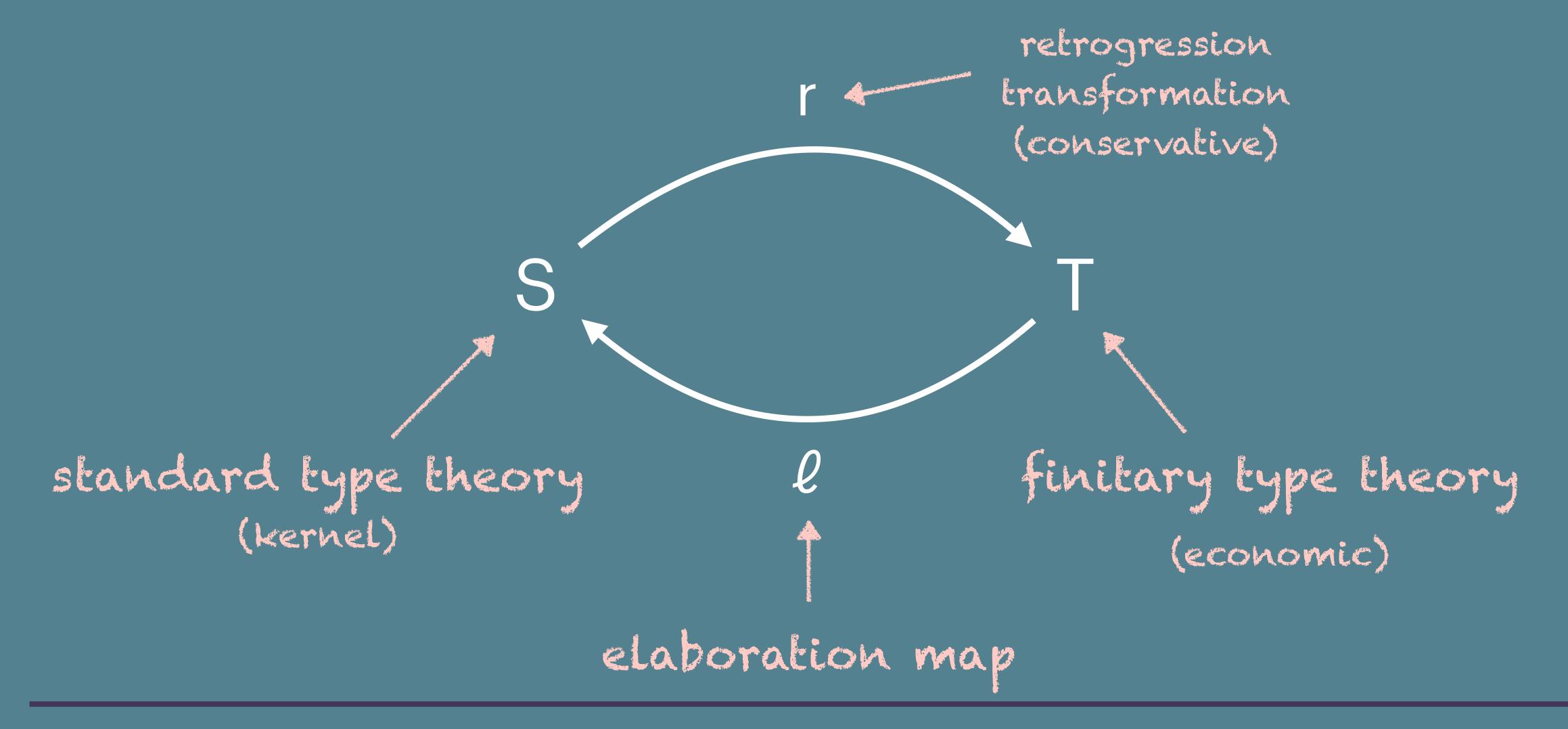
Elaboration map takes a derivation!

... such that $r_*(\Gamma' \vdash \mathcal{J}') = \Gamma \vdash \mathcal{J}$.

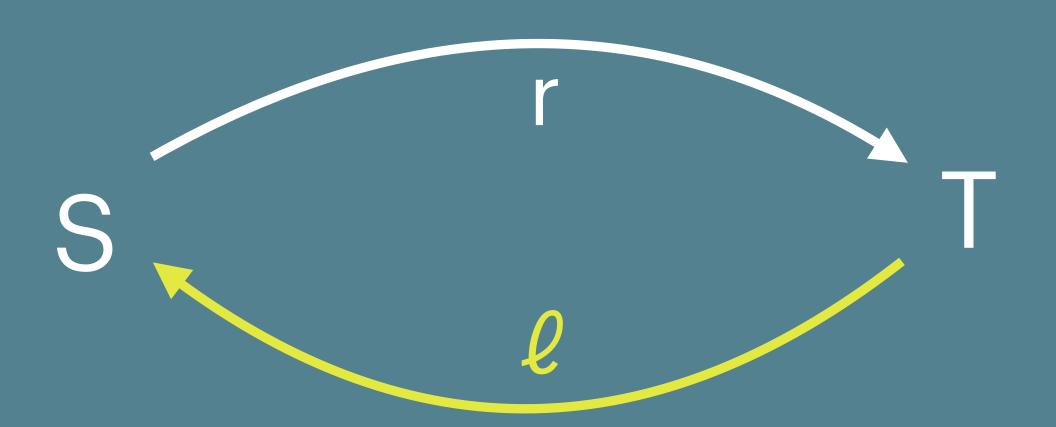
ℓ is a section of r.

Elaboration map preserves derivability.

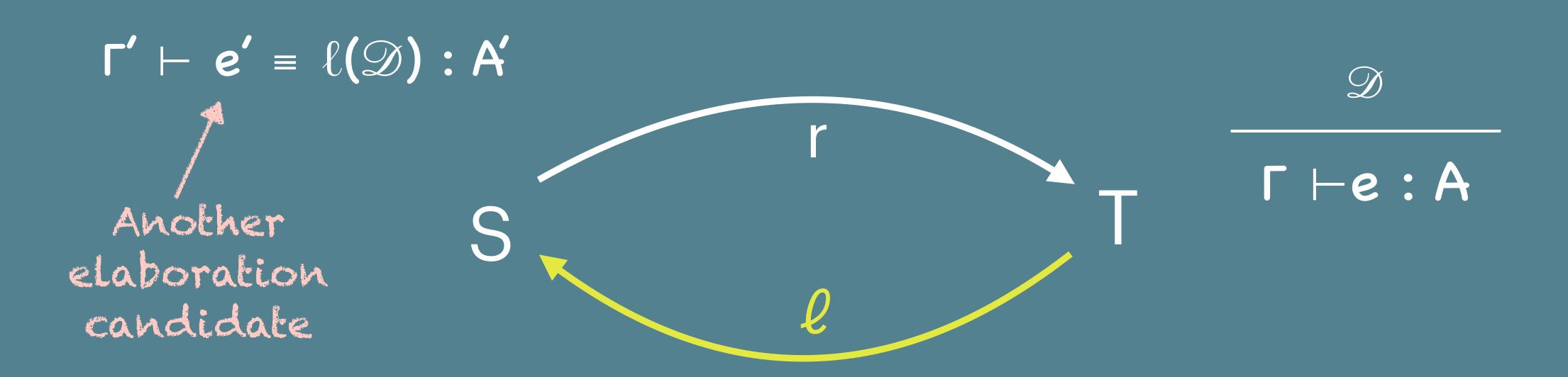
THE ESSENCE OF ELABORATION



Retrogression transformation is surjective on derivable judgements.

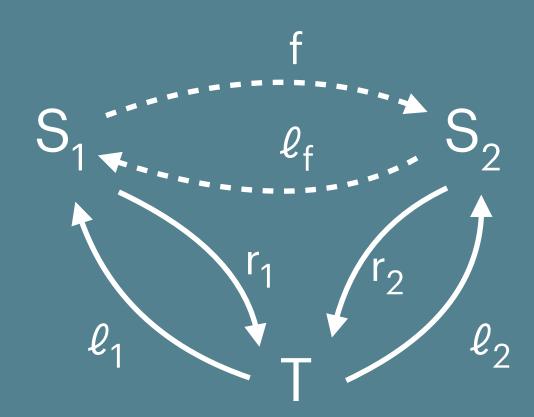


Elaboration map is unique up-to judgemental equality.



UNIVERSAL PROPERTY

Elaboration map satisfies the following universal property:



$$r_2 \circ f = r_1$$

f is conservative and unique up-to judgemental equality.

AN ELABORATION THEOREM

Every finitary type theory has "an elaboration".

For every finitary type theory T there exists a standard type theory S with a retrogression transformation $r: S \to T$ and elaboration map $\ell: T \to S$.

PROOF IDEA

(Elaboration theorem)

For every specific object rule
$$Ri = \frac{P_1 \cdots P_n}{| \mathcal{B}| e}$$
 introduce a symbol S_(i, Ri).

Retrogression transformation $r: S_(i, Ri) \mapsto e$ (syntactic part)

PROOF IDEA

(Elaboration theorem)

Specific rules of standard type theory S:

Specific object rules of T



Symbol rules in S

Specific equality rules of T

Specific equality rules in S

+ close under derivability

Do this inductively on the ordering of rules.

PROOF IDEA

(Elaboration theorem)

Define elaboration map inductively.

Prove desired properties of retrogression transformation (conservativity, type-theoretic transformation) and of elaboration map (section, preserves derivability).

AN ELABORATION THEOREM

For every finitary type theory T there exists a standard type theory S with a retrogression transformation $r: S \to T$ and elaboration map $\ell: T \to S$.

But 5 has a Loooot of specific equality rules!

Recall: universal property

ELABORATOR: ALGORITHM

ELABORATOR

Elaborator: an algorithm

takes: judgement J

outputs: a derivable elaborated judgement J' if it exists,

or reports there is none

* strongly derivable

in standard type theory

An elaborator, if it exists, is computable for our chosen type theory.

CHECKING

Type-checking:

Check that a term a has type A.

Derivable boundary!

* in equation-free

meta context

Check that the head a fits the boundary : A.

Equality-checking:

Check that A = B (or a = b : A).

Check that the head \bigstar fits the boundary A = B by \Box (or a = b : A by \Box).

Checking:

Check that the head e fits the boundary \mathcal{B} to get the judgement \mathcal{B} e.

EXISTENCE OF ELABORATOR

T has an elaborator if and only if T has decidable (judgement) checking.

Elaborator is the most general checking algorithm for T, if any exists.

If a standard type theory has decidable equality checking, then it has decidable checking.

If a finitary type theory has decidable (equality) checking, so does its elaborated standard type theory.

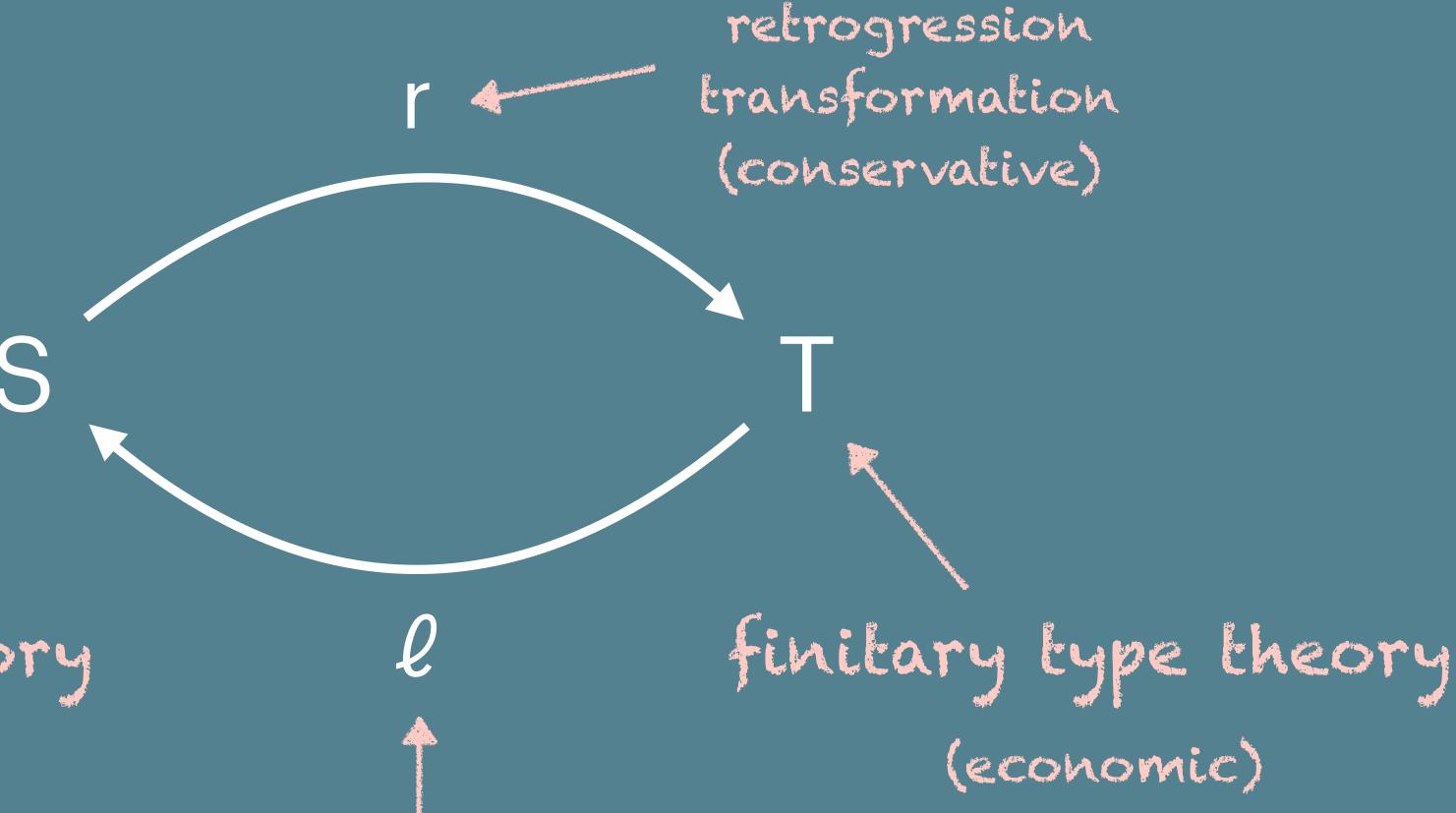
Note: the converse does not hold!

THE ESSENCE OF ELABORATION

Universal property

Elaboration theorem (every economic theory can be elaborated)

standard type theory
(kernel)



elaboration map

We have an example of a type theory such that:

(a) Checking is semidecidable.

(b) Equality checking is decidable.

(c) Checking is not decidable.

 $D \subseteq \mathbb{N} \times \mathbb{N}$ a computable subset, such that

 $\pi_1(D) = \{ n \in \mathbb{N} \mid \exists m \in \mathbb{N}. (n, m) \in D \}$ is semidecidable, not computable.

A signature is given by $(A_n : Type)_n \in \mathbb{N}$

Rules: for every (n, m) $\in D$ R_(n, m) = \vdash A_n type

Derivable boundary [] ⊢ ☐ type

Check if [] ⊢ A_n type is derivable?