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Equality checking algorithms are essential components of proof assistants based on type
theories [9, 3, 10, 13, 12, 1]. They free the user from the burden of proving equalities, and provide
computation-by-normalization engines. Some systems [11, 8, 7] also allow user extensions to the
built-in equality checkers, possibly sacrificing completeness and sometimes even soundness. The
situation is even more challenging in a proof assistant that supports arbitrary user-definable
type theories, such as Andromeda 2 [4, 5], where in general no equality checking algorithm may
be available. Still, the proof assistant should provide convenient support for equality checking
that works well in the common, well-behaved cases.

We developed an extensible equality checking algorithm and proved it to be sound [6] for a
large class of dependent type theories. The algorithm is parameterized by computation rules
(β-rules), extensionality rules (inter-derivable with η-rules), and a notion of normal form. It
combines and extends algorithms based on type-directed equality checking [14, 2] that intertwine
two phases: the type-directed phase applies extensionality rules to reduce the problem to simpler
types, while the normalization phase applies computation rules to compute normal forms.

We define precisely what it means for an equality rule to be a computation or an extension-
ality rule. For this purpose we identify the notion of an object-invertible rule, which guarantees
soundness of normalization steps and of type-directed reductions of subsidiary equations. We
give simple syntactic criteria for recognizing computation and extensionality rules.

We implemented the algorithm in the Andromeda 2 proof assistant in around 1400 lines
of OCaml code. The user needs only provide the equality rules they wish to use, after which
the algorithm automatically classifies them either as computation or extensionality rules (and
rejects those that are of neither kind), and devises an appropriate notion of normal form. The
implementation consults the nucleus to build a trusted certificate of every equality it proves
and every term it normalizes. It is easy to experiment with different sets of equality rules
and dynamically switch between them. In the case of well-behaved type theories, such as the
simply typed lambda calculus or Martin-Löf type theory, the algorithm behaves like well-known
standard equality checkers. We do not address completeness and termination, as these depend
heavily on the choice of computation and extensionality rules.

Object-invertible, computation and extensionality rules. In an inference rule
P1 · · · Pn

C

the object premises are those Pi which are type or term judgements, and equational premises
those that are type or term equations. We say that such a rule is object-invertible when the
following holds for every instance of it: if the conclusion is derivable (possibly by application
of a different rule) then the object premises are derivable.

Object-invertible rules may be used to invert derivable judgements up to equational premises.
That is, if a derivable judgement J coincides with some instance of the conclusion C of an object-
invertible rule, then we are guaranteed that the corresponding instances of the object premises
are also derivable, so only the equational premises must be checked.
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A type computation rule is a derivable type equality rule, shown below on the left,

P1 · · · Pn

` A ≡ B
P1 · · · Pn

` A type

such that its left-hand side presupposition, shown above on the right, is object-invertible and
deterministic (its conclusion can be instantiated to match a given judgement in at most one
way). Term computation rules are defined similarly.

An extensionality rule is a derivable rule, shown below on the left,

P1 · · · Pn ` x :C ` y :C Q1 · · · Qm

` x ≡ y :C
P1 · · · Pn

` C type

such that Q1, . . . , Qm are equational premises, and its type presupposition, shown above on the
right, is object-invertible and derivable.

Principal arguments and normal forms. A third component of the algorithm is a suit-
able notion of normal form, which guarantees correct execution of normalization and coherent
interaction of both phases of the algorithm. In our setting, normal forms are determined by
a selection of principal arguments. By varying these, we obtain known notions, such as weak
head-normal and strong normal forms (all arguments are declared principal). An expression is
said to be in normal form if no computation rule applies to it, and its principal arguments are
in normal form.

In the implementation the user may specify the principal arguments directly, or let the
algorithm read the principal arguments off the computation rules automatically, as follows: if
s(u1, . . . , un) appears as a left-hand side of a computation rule, then the principal arguments of s
are those ui’s that are not metavariables, i.e., matching against them does not automatically
succeed, and so they should first be normalized.

Overview of the type-directed equality checking. The equality checking algorithm is
parameterized by the underlying type theory, computation rules, extensionality rules, and prin-
cipal arguments. It has the following mutually recursive parts:

1. Normalize a type or a term: normalize the principal arguments, apply a computation rule
and recursively check subsidiary equations as they arise; repeat until no computation rule
applies.

2. Check A ≡ B: normalize A and B and structurally compare their normal forms.
3. Structurally check A ≡ B: compare A and B by an application of a congruence rule,

where the principal arguments are recursively compared structurally and the others by
the general equality checks.

4. Check s ≡ t : A:
(a) type-directed phase: normalize A and apply extensionality rules, if any, to reduce the

equality to subsidiary equalities,
(b) normalization phase: if no extensionality rules apply, normalize s and t and struc-

turally compare their normal forms.
5. Structurally check s ≡ t : A: compare s and t by an application of a congruence rule,

where the principal arguments are recursively compared structurally and the others by
the general equality checks.
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