iVl

Equality Checking for Finitary Type Theories

Anja Petkovi¢!
LUniversity of Ljubljana, Slovenia

HoTTEST Conference 2020,
June 18, 2020

j-w.w. Andrej Bauer and Philipp G. Haselwarter

1 This material is based upon work supported by the Air Force Office of Scientific Research under award
number FA9550-17-1-0326.

/22

Motivation

= Equality checking algorithms are essential parts of proof
assistants.

= Most popular proof assistants provide them for their
underlying type theory.

9 Agda [IWN

= Extensions to the equality checking.

“@e U Agda

Motivation

What happens with user-definable type theory like in
Andromeda 27

)
N

Motivation

What happens with user-definable type theory like in
Andromeda 27

What we did:

= Designed a user-extensible equality checking algorithm, based
on type-directed equality checking, e.g., Harper & Stone
(2006).

= Implementation in Andromeda 2.

Talk overview

= Finitary Type Theories (as implemented in Andromeda 2).
= QOverview of the algorithm:

= type-directed phase,
= normalization phase,
= normal forms.

= Live demo: using the implementation of the equality checker
in Andromeda 2.

Finitary Type Theories
An adaptation of general type theories that Peter Lumsdaine
talked about,

Expressions, judgements

Definition
Over a signature %, define:
» Raw (scoped) expr F.xprL (n), Expr)"‘(n): sets of raw
lype/tcrm expressions in n variables
» Raw contexts I': suitable lists of raw type epxressions
» Judgement forms, judgements: suitable lists/tuples of
expressions 1

Ty T+ Atype
Tm Tra:A
TyEq T+rA=B
TmEq Tra=b:A

but finitary rules and finitely many of them.

Finitary Type Theories

= 4 hypothetical judgement forms

I' - A type 'Fa:A 'HA=B I'Fa=b:A
= boundaries

I-Otype THO:A TFA=B Tra=b:A4

= well-presented rules (finitary and finitely many)

6/22

Context-free presentation of finitary type theories
Andromeda 2 is an LCF-style proof assistant:

/22

Context-free presentation of finitary type theories
Andromeda 2 is an LCF-style proof assistant:

no proof state

/22

Context-free presentation of finitary type theories
Andromeda 2 is an LCF-style proof assistant:

no proof state = no global contexts.

/22

Context-free presentation of finitary type theories
Andromeda 2 is an LCF-style proof assistant:

no proof state = no global contexts.

Context-free presentation:
= Previous work: I' . by Geuvers et al. for Calculus of
Constructions.
= No explicit contexts.
= Free variables are tagged with their types: a*.

Context-free presentation of finitary type theories
Andromeda 2 is an LCF-style proof assistant:

no proof state = no global contexts.

Context-free presentation:
= Previous work: I' . by Geuvers et al. for Calculus of
Constructions.

= No explicit contexts.
A

= Free variables are tagged with their types: a**.

Details: Philipp Haselwarter's dissertation.
r TT—

7/22

Context-free presentation of finitary type theories

' Atype I',x:AF B type
['FTI(x:A). B type

/22

Context-free presentation of finitary type theories

' Atype I',x:AF B type
I'FTI(x:A). B type

!

H Atype F {x:A}B type
= II(A, {z}B(z)) type

Abstraction is a primitive notion.

22

Context-free presentation of type theories

4 judgement forms:

ji= A type a:A A=Bbya«a a=b:Abya
boundaries:

b:= O type O:A A=BbyO a=b:AbyO
Abstracted judgements and boundaries:

{z1:A1} Ax,: AL {z:A) A{x,: A, 1D

22

Assumption sets
Contexts keep track of:

10/22

Assumption sets
Contexts keep track of:
@ Types of variables.

10/22

Assumption sets
Contexts keep track of:
@ Types of variables.
® Which variables are available.

10/22

Assumption sets
Contexts keep track of:
@ Types of variables.
® Which variables are available.

Annotations solve 1, but 2 needs care, e.g., if the user poses
equality reflection rule

'FAtype T'ks: A THt: A TFp:Eq(A,s,t)

I'kFs=t: A

then p (and its potential variables) is not recorded in the
conclusion.

10/22

Assumption sets
Contexts keep track of:
@ Types of variables.
® Which variables are available.
Annotations solve 1, but 2 needs care, e.g., if the user poses
equality reflection rule
'FAtype T'ks: A THt: A TFp:Eq(A,s,t)
I'ks=t: A

then p (and its potential variables) is not recorded in the
conclusion. Tracking used variables: assumption sets.

A=Bbya a=b: Aby«

Assumption sets « consist of:
= free variables
= bound variables

= meta-variables

Conversions

Explicit conversion in terms:

F A type

F B type Ft: A

FA=Bbya«a

F(t:Bbya):B

11/22

Conversions
Explicit conversion in terms:

F A type F B type Ft: A FA=Bbya«

F(t:Bbya):B
Choices:

Example (Congruence rule for II)

'-A=A" T,z:AF B(z) = B'(x)
IFII(A,{z}B(z)) = (A, {z}B’(z))

11/22

Conversions
Explicit conversion in terms:

F A type F B type Ft: A FA=Bbya«

F(t:Bbya):B
Choices:

Example (Congruence rule for II)

'-A=A" T,z:AF B(z) = B'(x)
IFII(A,{z}B(z)) = (A, {z}B’(z))

FA=A"bya +{z:A}B(z)=B'(z)bys
FII(A, {z}B(x)) = (A", {z}B’(x : A by «))

FA=A"bya +{x:A}B(z)=DB'(z: A bya) byf

= 1I(A, {z}B(z)) = (A, {} B (z))

11/22

Finitary Type Theories

Summary:

= Free variables annotated with their types a**.

= Bound variables abstracted with an explicit abstraction.

= Assumption sets.

= Explicit conversions in terms.

12 /22

Overview of the algorithm

Mutually recursive sub-algorithms:

Normalize a type A
Normalize a term ¢ of type A
Check equality of types A = B

Check equality of normal types A =B
Check equality of terms s and ¢ of type A
@ type-directed phase
® normalization phase

Check equality of normal terms s and ¢ of type A

Normalization

= Use computation rules as long as any apply.

= Normalize the normalizing arguments.

Normalization outputs a certified equation between the original
and normalized expression.

14 /22

Equality checking

Check equality of types A = B: A and B are normalized
and their normal forms are compared.

Check equality of normal types A = B: compare
structurally - apply a congruence rule. Proceed recursively on
the (normalizing) arguments.

Check equality of terms s and ¢ of type A:

@ type-directed phase: normalize the type A and apply
extensionality rules, if any.

® normalization phase: if no extensionality rules apply,
normalize s and ¢ and compare their normal forms.

Check equality of normal terms s and ¢ of type A: normal
terms are compared structurally.

Extensionality rules

PP Fz:A Fy:A Q - Q,

n
Fe=y: A ’
where
= P,,..., P, are object premises,
= Qq,...,Q,, are equality premises,

Example (Extensionality rule for dependent functions?)

H A type F {x:A}B type
Ff (A {z}B(z)) Fg:1(A {z}B(z))
- {.’L’A} app(A,B,f,:E) = app(A,B,g,m) ; B(l‘)

Ff=g:11(A,{z}B(z))

Inot to be confused with function extensionality

16

22

Extensionality rules

PP Fz:A Fy:A Q - Q,

n
Fe=y: A ’
where
= P,,..., P, are object premises,
= Qq,...,Q,, are equality premises,

Example (Extensionality rule for dependent functions?)

H A type F {x:A}B type
Ff (A {z}B(z)) Fg:1(A {z}B(z))
- {‘TA} app(A,B,f,:E) = app(A,B,g,m) ; B(l‘)

Ff=g:11(A,{z}B(z))

Note: Inter-derivable with 7-rules.
Inot to be confused with function extensionality

16

22

Computation rules

Computation rules take the forms

P, - P P, - P

3 "
Fu=v:T FA=B
where the P;'s are object premises.
= w4 has the form s(eq,...,¢€,,)

= A has the form S(eq, ..., e

m)

Example (Dependent functions)

FAtype F{x:A}Btype F {z:A}s: B(z)

Fa:A

Fapp(A, B,\(A, B,s),a) = sla/x] : B(a)

17 /22

Normal forms
Definition
An expression is in normal form if
= no computation rules apply,

= its normalizing arguments are in normal form.

18 /22

Normal forms
Definition
An expression is in normal form if
= no computation rules apply,
= its normalizing arguments are in normal form.

Selecting normalizing arguments specifies what is a (weak) normal
form.

In Andromeda 2: normalizing arguements for s(uq,...,u,,) are
those u,'s that are not meta-variables.

Example (Computation rule for app)

HAtype F{x:A}Btype F{x:A}s:B(zx) Fa:A
Fapp(A, B,\(A, B, s),a) = sa/z] : B(a)

Andromeda marks just the third argument of app as normalizing
argument.

Normalizing abstracted arguments

Example
How to normalize [[(A4, {z} B(x)).

19/22

Normalizing abstracted arguments
Example

How to normalize [[(A4, {z} B(x)).
® Normalize A to get - A= A’ by a.

19/22

Normalizing abstracted arguments

Example
How to normalize [[(A4, {z} B(x)).
® Normalize A toget - A= A’ by a.
® Normalize {z: A} B(x) to get - {z:A}B(x) = B’ (z) by 3

19/22

Normalizing abstracted arguments

Example

How to normalize [[(A4, {z} B(x)).
® Normalize A toget - A= A’ by a.
® Normalize {z: A} B(x) to get - {z:A}B(x) = B’ (z) by 3
® Convert x in B'(z) to get

- 114 {=} B'[(« : A by @)/2]) type

19/22

Normalizing abstracted arguments

Example

How to normalize [[(A4, {z} B(x)).
® Normalize A toget - A= A’ by a.
® Normalize {z: A} B(x) to get - {z:A}B(x) = B’ (z) by 3
® Convert x in B'(z) to get

- 114 {=} B'[(« : A by @)/2]) type

O Apply congruence rule and combine into

- 114 {2} B(2)) = [[(A’. {z} B'(x : A by @)) by (B\{z})

19/22

Future work

= Add support for confluence and termination of normalization.
= Appraise efficiency and find opportunities for optimization.

= Extend the algorithm to cover more complex patterns.

Demo in Andromeda

= Implemented-in-Ocaml in 1300 lines.
= Qutside of trusted nucleus.
= Each equality step certified by nucleus.

». EXPERIMENT
3> 1 /l o VR

21/22

Demo in Andromeda

require eq ;;

rule I (A type) ({x : A} B type) type ;;

rule lambda (A type) ({x : A} B type) ({x : A} e : B{x}) : T AB ;;
rule app (A type) ({x : A} B type) (s : M A B) (a : A) : B{a} ;;

rule M_beta (A type) ({x : A} B type)

({x : A} s : B{x}) (a : A)

: app A B (lambda A B s) a == s{a} : B{a} ;;
eq.add_rule II_beta;;

rule M_ext (A type) ({x : A} B type) (f : TAB) (g : MTAB) ({x : A} app A B f x == app A B g x : B{x})
: £f==g : 1 ABj;;

eq.add_rule II_ext;;

let eta = derive (A type) ({x : A} B type) (f : I A B) ->
eq.prove (f == lambda A B ({a : A} app AB f a) : 1 A B by 77) ;;

22/22

