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Equality checking algorithms are essential components of proof assistants based on type
theories [Coq, Agd, dMKA+15, SBF+19, GCST19, AOV17]. They free the user from the
burden of proving equalities, and provide computation-by-normalization engines. The type
theories found in the most popular type-theoretic proof assistants are carefully designed to
have decidable equality. Some systems [Ded, CA16] also allow user extensions to the built-in
equality checkers, possibly sacrificing their completeness.

The situation is worse in a proof assistant that supports arbitrary user-definable theories,
such as Andromeda 2 [And, BGH+18], where in general no equality checking algorithm may be
available. Short of implementing exhaustive proof search, the construction of equality proofs
must be delegated to the user (and still checked by the trusted nucleus). While some may
appreciate the opportunity to tinker with equality checking procedures, they are surely out-
numbered by those who prefer good support that automates equality checking with minimal
effort, at least for well-behaved type theories that one encounters in practice.

We have designed and implemented in Andromeda 2 an extensible equality checking algo-
rithm that supports user-defined computation rules (β-rules) and extensionality rules (inter-
derivable with η-rules). The user needs only to provide the equality rules they wish to use,
after which the algorithm automatically classifies them either as computation or extensionality
rules (and rejects those that are of neither kind), and devises an appropriate notion of weak
head-normal form. In the case of well-behaved type theories such as the simply typed lambda
calculus or Martin-Löf type theory with η for dependent products, the algorithm behaves like
well-known standard equality checkers. In general, it may be incomplete or non-terminating,
but it can never be the source of unsoundness because it resides outside of the trusted nucleus.

Our algorithm is a variant of a type-directed equality checking algorithm [SH06, AS12],
described in more detail below. It is implemented in around 1300 lines of OCaml code. The
algorithm consults the nucleus to build a trusted certificate of every equality it proves and
every term normalization it performs. It is easy to experiment with different sets of equality
rules, and dynamically switch between them depending on the situation at hand. Our initial
experiments are encouraging, although many opportunities for optimization and improvements
await.

Type-directed equality checking. The kind of equality checking algorithm that we employ
is comprised of several mutually recursive subroutines:

1. Weak head-normalize a type A: the user-provided type computation rules are applied to
A to give a sequence of equalities A ≡ A1 ≡ · · · ≡ An, until no more rules apply. Then
the heads of An are normalized recursively (see below) to obtain An ≡ A′

n, after which
the (certified) equality A ≡ A′

n is output.
2. Weak head-normalize a term t : A: analogously to normalization of types, the user-

provided term computation rules are applied to t until no more rules apply.
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3. Check equality of types A ≡ B: the types A and B are normalized and their normal forms
are compared.

4. Check equality of normalized types A ≡ B: normalized types are compared structurally,
i.e., by an application of a suitable congruence rule. Their subexpressions are compared
recursively. For example, to prove Π(x :C)D ≡ Π(x :C′)D

′, we recursively prove C ≡ C ′

and x :C ` D ≡ D′.
5. Check equality of terms s ≡ t : A:

(a) type-directed phase: normalize the type A and based on its normal form apply user-
provided extensionality rules, if any, to reduce the equality to subsidiary equalities,

(b) normalization phase: if no extensionality rules apply, normalize s and t and compare
their normal forms.

6. Check equality of normalized terms s ≡ t : A: normalized terms are compared structurally,
analogously to comparison of normalized types.

One needs to choose the notions of “computation rule”, “extensionality rule” and “normal form”
wisely in order to guarantee completeness. In particular, in the type-directed phase the type
at which the comparisons are carried out should decrease with respect to a well-founded notion
of size, while normalization should be confluent and terminating. These concerns are external
to the system, and so the user is allowed to install rules without providing any guarantees of
completeness or termination.

Computation and extensionality rules. Term computation rules, type computation rules,
and extensionality rules respectively have the forms

P1 · · · Pn

` u ≡ v :A

P1 · · · Pn

` A ≡ B
P1 · · · Pn ` x :A ` y :A Q1 · · · Qm

` x ≡ y :A

In a term computation rule, P1, . . . , Pn are object premises that introduce term and type meta-
variables, while u must be a term symbol applied to subexpressions in which all the meta-
variables appear. An extensionality rule, as above, has object premises P1, . . . , Pn and sub-
sidiary equality premises Q1, . . . , Qm. We require that every meta-variable introduced by the
premises appears in A. To tell whether such a rule applies to s ≡ t : B, we pattern match B
against A, and proceed to work on the instantiated equality subgoals Q1, . . . , Qm.

Heads and normal forms. For the algorithm to work correctly, it needs a notion of normal
forms that matches the equality rules. We use weak head-normal forms: an expression is
said to be in normal form if no computation rule applies to it, and its heads are in normal
form. Furthermore, when normal forms are compared structurally, their heads are compared
structurally in a recursive fashion, while the remaining arguments are compared as ordinary
(non-normal) expressions.

The question arises, how to figure out which arguments of a term or a type symbol are the
heads. For instance, how can we tell that the third argument of fst above is a head, while
pair has no heads? In our implementation the user may specify the heads directly, or let the
algorithm read the heads off the computation rules automatically, as follows: if s(u1, . . . , un)
appears as a left-hand side of a computation rule, then the heads of s are those ui’s that are
not meta-variables, i.e., matching against them does not automatically succeed, and so further
normalization is required. By varying the notion of heads we may control how expressions are
normalized. For example, strong normal forms are just weak head-normal forms in which all
arguments are declared to be heads.
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