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Program dela

Program dela v slovenščini

Cilj projekta je raziskati iterativni algoritem za iskanje negibnih točk monotonih
odsekovno linearnih funkcij iz [1]. Raziskalo se bo tako iz teoretičnega kot iz eksper-
imentalnega vidika.

V teoretičnem delu se bo študentka naučila matematičnega ozadja vključno s
teorijo negibnih točk za urejene množice [2] in eliminacijo kvantifikatorjev za pre-
dikatno teorijo linearne aritmetike [3]. Glavni cilj teoretičnega dela je razumevanje
dokaza pravilnosti algoritma iz [1].

V eksperimentalnem delu bo študentka implementirala program za algoritem iz
[1] in raziskala njegovo praktično učinkovitost na testnih primerih.

Če bo čas dopuščal, ko bosta zgoraj navedena glavna cilja dosežena, se lahko pro-
jekt razširi z razvijanjem in raziskovanjem različic algoritma z namenom optimizacije
časovne in/ali prostorske učinkovitosti. Takšne različice morajo biti opremljene z
dokazom pravilnosti.

Program dela v angleščini

The goal of the project is to investigate the iterative algorithm for finding fixed-
points of monotone piecewise linear functions from [1]. This will be done from both
theoretical and experimental angles.

On the theoretical side, the student will learn the background mathematics,
which includes fixed-point theory for ordered sets [2], and quantifier elimination
for the first-order theory of linear arithmetic [3]. The main theoretical goal is to
understand the correctness proof for the algorithm in [1].

On the experimental side, the student will implement a program for the algorithm
from [1], and explore its practical efficiency on test examples.

If time permits, once the two main goals above have been achieved, the project
may be further extended by developing and investigating variations on the algorithm,
aiming for time and/or space-efficiency improvements. Such variations should be
proven correct.
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Računanje fiksnih točk odsekovno linearnih funkcij

Povzetek

Računamo fiksne točke monotonih odsekovno linearnih funkcij. Podan je opis
odsekovno linearnih funkcij preko pogojnostnih linearnih izrazov. Dokazano je, da
je vsako takšno funckijo mogoče podati s formulo iz predikatne teorije linearne ar-
itmetike. Nekatere monotone odsekovno linearne funkcije je mogoče podati tudi
preko µ-termov. Opisan je algoritem za računanje najmanjše in največje negibne
točke monotone odsekovno linearne funkcije. Za izboljšanje njegove učinkovitosti
podajamo tudi njegovo neposredno posodobitev in optimizacijo preko eliminacije
kvantifikatorjev. Vse različice algoritma so dokazano pravilne in implementirane v
programskem jeziku python 3. Med seboj so tudi primerjane po eksperimentalni
učinkovitosti.

Computing fixed points of monotone piecewise linear functions

Abstract

We take a look at monotone piecewise linear functions and an algorithm, that
computes the least and the greatest fixed points of such functions. A description
of piecewise linear functions via the conditioned linear expressions is given and it is
proven, that such functions can be expressed in the first-order theory of linear arith-
metic. Another decription of some monotone piecewise linear functions is given via
µ-terms. Several modifications of the fixed point algorithm (a direct modification,
a quantifier elimination optimisation) are considered and proven to be correct. All
the versions of the algorithm are implemented in python 3 and their performance is
compared.

Math. Subj. Class. (2010): 06D30, 03G20 , 03G10, 06B23, 94D05, 03B52, 03C10
Ključne besede: odsekovno linearne funkcije, µ-račun, negibna točka, algoritem
Keywords: piecewise linear functions, µ-calculus, fixed point, algorithm
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1 Introduction

In this project we are looking at monotonic piecewise linear functions and various
algorithms, that compute the least and the greatest fixed points of such functions.
Fixed points have been studied in various settings, from the Banach fixed point
theorem [9], that deals with convergence, to the Brouwer fixed point theorem [12],
that focuses on the topological point of view and studies functions on discs. Here,
we consider fixed points in the light of the order-theoretic Knaster-Tarski theorem
[1].

The problem of computing fixed points of the monotone piecewise linear func-
tions originated in the study of algorithms for “model checking” [2] used in the
specification and verification of systems cobining nondeterminism and probabilistic
behaviour. Since the functions that arise from that are discontinuous, we cannot
make a restriction to deal only with continuous functions, therefore we adopt a more
general notion of piecewise linearity that does not presuppose continuity.

The main reference for this project is an article by M. Mio and A. Simpson [13],
where one version of the desired algorithm for computing fixed points of monotonic
piecewise linear functions is described. However, we have made some modifications
in order to improve efficiency of the algorithm and those modifications, as well as
the modifications in the proof of correctness and termination of the algorithm, are
original work. We also suggest an additional optimisation via quantifier elimination,
which is an original contribution as well.

The main thesis body is divided into 6 sections. Section 2 is devoted to intro-
ducing basic definitions and notation on lattices and fixed points, deriving some
necessary properties. The main central result of this part is the Knaster-Tarski
Theorem, concerning the existence of least and greatest fixed points. The material
for that section is mostly adapted from [1].

In the next section we define piecewise linear functions and state some of their
properties. Here we have relied on [13]. However, one contribution is that we make
explicit the notion of a local algorithm for a piecewise linear function, which is only
implicit in [13]. It is designed for the purpose of capturing the properties of the
algorithm for computing fixed points.

The entire Section 4 is about the iterative algorithm for computing fixed points
of monotonic piecewise linear functions, its modifications and improvements. This
section is the central theoretical contribution of the dissertation. The reference
is again [13]. Section 5 provides us with an alternative (and more consise) way
to describe some monotonic piecewise linear functions as introduced in [13] via µ-
calculus.

The next two Sections 6 and 7 give details on the implementation of the al-
gorithms in python 3 and the obtained results. The entire source code available at
the link given at the begining of Section 6 is original work of the author, designed
solely for this project. Since there is too much code to be included as an appendix,
we merely provide a link to an open online repository.

1



2 Complete lattices, fixed points and the Knaster-
Tarski theorem

In this section we will get to know the basics of lattice theory and µ-calculus needed
for computing the fixed points. Many of the theorems and their proofs are covered
in [1] in detail, we will only state the relevant part of order theory and fixed point
calculus.

2.1 Complete lattices

Let us begin by the following definition of a lattice. We will use notation (E,≤) for
an ordered set, where ≤ is a partial order (reflexive, antisymmetric and transitive).
We will leave out the notation for the ordering and just call E an ordered set, where
the relation will be known from the context. Recall that an element e ∈ E is an
upper bound of X, where X ⊆ E, if for all x ∈ X, it holds that x ≤ e. Similarly e
is a lower bound if e ≤ x for all x ∈ X. An element e ∈ E is a least upper bound
of the set X ⊆ E, if it is the least element in the set of all upper bounds, i. e. the
conditions

• ∀x ∈ X, x ≤ e,

• if ∀x ∈ X, x ≤ f for some f ∈ E, then e ≤ f

hold. Similarly for greatest lower bound. The least upper bound is unique and we
will denote it by

∨
X (and

∧
X for the greatest lower bound).

Definition 2.1. A lattice is an ordered set (E,≤) such that for any two elements
x, y ∈ E, the set {x, y} has a least upper bound x ∨ y and a greatest lower bound
x∧ y. A complete lattice is an ordered set (E,≤) such that every subset X ⊆ E has
a least upper bound

∨
X and a greatest lower bound

∧
X.

In particular a complete lattice has a least element
∨
∅ and a greatest element∧

∅.
Example 2.2. The cannonical example of the complete lattice is the powerset with
the subset relation. Let S be any set and P(S) be the set of all subsets. Then
(P(S),⊆) is an ordering and for any X ⊆ P(S), we have

∨
X =

⋃
X and

∧
X =⋂

X.
Another way to construct complete lattices is via product. If E and F are ordered

sets, we consider the Cartesian product E × F with the product ordering

(e, f) ≤ (e′, f ′) ⇐⇒ (e ≤ e′ and f ≤ f ′).

This is trivially generalised for a product of n ordered sets. Recall the projections
π1 and π2 on E and F respectively. If E and F are complete lattices, their product
is also a complete lattice, since for X ⊆ E×F , we have

∧
X = (

∧
π1(X),

∧
π2(X))

and
∨
X = (

∨
π1(X),

∨
π2(X)).

We note that for an ordered set to be a complete lattice it is sufficient that
∨
X

exists for every subset X ⊆ E. It then follows that
∧
X exists for every X ⊆ E.

This is a consequence of the following proposition:

2



Proposition 2.3. For X ⊆ E if the set of lower bounds of X has a least upper
bound, then this is the greatest lower bound of X.

Symmetrically if the set of upper bounds of X has a greatest lower bound, then
it is the least upper bound of X.

Proof. Let B denote the set of all lower bounds of X. Then
∨
X is a lower bound of

X for the following reason: Let x ∈ X. For all y ∈ B it holds that y ≤ x. Therefore
x is an upper bound of B and

∨
B ≤ x. Because

∨
B is an element of B, it makes

it the greatest element of B. The proof is similar for upper bounds.

We observe that the notion of the lower bound and the upper bound are in a
way very symmetric. If for an ordered set (E,≤) we define the relation ≤′ by

x ≤′ y ⇐⇒ y ≤ x,

we also get an ordered set, and furthermore the least upper bound for a subset
X ⊆ E for ordering ≤ is the greatest lower bound with ordering ≤′ and vice versa.
So any property that holds for least upper bounds has its dual formulation for
greatest lower bounds and we do not need to prove the propery again. We call this
principle of symmetry and we will use it to shorten the proofs.

Let us take a look at a useful relation between subsets and least upper bounds.
Proposition 2.4. Let E be a complete lattice and X ⊆ X ′ ⊆ E. Then∧

X ′ ≤
∧

X∨
X ≤

∨
X ′.

The statement follows straight from definitions and the proof is not included in
[1]. However, let us take a closer look to fully understand the definitions.

Proof. Let B(X) denote the set of lower bounds of X and B(X ′) the set of lower
bounds of X ′. By definition of the lower bound for every b ∈ B(X ′) and for every
x′ ∈ X ′ it holds that b ≤ x′. Because X ⊆ X ′ for every x ∈ X it automatically holds
that b ≤ x and b is also a lower bound for X. This implies that B(X ′) ⊆ B(X).
When we find the greatest lower bound of X ′ we take the maximum element of
B(X ′), but since B(X) has B(X ′) as a subset, there are more candidates to take a
maximum. Therefore

∧
X ′ ≤

∧
X. The second statement holds by the principle of

symmetry.

The proposition clearly holds for any complete lattice, but in the previous ex-
ample with the powerset and subset ordering, the statement is obvious. If X ⊆ X ′,
then an element x ∈

∧
X ′ is in all subsets S ∈ X ′ and therefore also in all subsets

S ∈ X. This implies that x ∈
⋂
X, so x ∈

∧
X. By definition of the relation we

get
∧
X ′ ≤

∧
X. In the second part we take unions instead of intersections and we

get a similar result.
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2.2 Monotonic functions and fixed points

We are mainly interested in functions between lattices, namely monotonic functions.
For ordered sets E and F we will use notation EF for the set of monotonic functions
from F to E. We would like to generalize the notion of monotonic functions on real
numbers to be used in ordered sets.
Definition 2.5. Let (E,≤E) and (F,≤F ) be two ordered sets. A function f : E → F
is said to be monotonic, if

∀x, y ∈ E, x ≤E y =⇒ f(x) ≤F f(y).

This definition coincides with monotonicity we already know from functions on
R. Although we are used to specifying whether a function is monotone increasing or
decreasing, here we only deal with monotone increasing functions (as in definition
2.5) and we will use the term monotonicity in this sense.
Example 2.6. Let us revisit the powerset example (P(S),⊆). If g : S → S is any
mapping, we can construct a monotonic function g̃ : P(S) → P(S) with g̃(X) :=
{g(x)|x ∈ X}. To prove monotonicity, we take two sets X, Y ∈ P(S) with X ≤ Y ,
which means X ⊆ Y . When we use g̃ on X and Y , we get

g̃(X) = {g(x)|x ∈ X} ⊆ {g(x)|x ∈ Y } = g̃(Y ).

By definition of ≤ we get g̃(X) ≤ g̃(Y ).
Here by f(x) we mean the direct image of X under f . (In example 2.6 this was

written f̃(x) in order to distinguish f and f̃ . Henceworth, we revert to the standard
notation f(x).)

For the proof of Knaster-Tarski theorem later we will also need the following
property of monotonic functions.
Proposition 2.7. Let E and F be complete lattices and let f : E → F be monotonic.
For any subset X ⊆ E, ∨

F

f(X) ≤F f(
∨
E

X)

and
f(
∧
E

X) ≤F

∧
f(X).

Proof. It is enough to show that f(
∨

E X) is an upper bound of f(X). Then the
least upper bound

∨
F f(X) will be smaller or equal by definition. For any y ∈

f(X) there is x ∈ X such that y = f(x). Since x ≤E

∨
E X and f is monotonic

y = f(x) ≤F f(
∨

E X) and we have an upper bound. The second statement holds
by the principle of symmetry.

We now focus on the functions from an ordered set E onto itself and define a
fixed point.
Definition 2.8. Let E be any set and f : E → E a function. A fixed point of f is
an element x ∈ E, such that f(x) = x. The set of all fixed points of f is denoted
by Fix(f).

In the case that we have a function f : R → R, a fixed point would be at an
intersection between the graph of the function and the diagonal y = x.

4
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y = x
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Figure 1: Fixed points of a function f(x) = x3 − 3x+ 1.

Example 2.9. Let us look at function f(x) = x3 − 3x + 1 and its graph on Figure
1. We can observe that f has three fixed points, so |Fix(f)| = 3. Note that fixed
points are only x-coordinates, but for clarity intersections are marked.

Finding fixed points is a standard problem in many different contexts. For
example the Banach fixed point theorem (see [9]) is used for finding fixed points
in metric spaces, but if we are trying to find a fixed point numerically, we translate
this problem to finding a zero of a function f − id. However in this project we
are dealing with special functions and therefore have an alternative algorithm, that
finds a fixed point as an exact rational number (but more on that later).

When E is an ordered set, Fix(f) is an ordered subset of E and it can be empty.

2.3 Knaster-Tarski theorem

The most interesting fixed point for us are the least and the greatest fixed points of
a monotonic function. But so far we have not even proven the existence of a fixed
point for such functions. This is taken care of by the Knaster-Tarski theorem, which
ensures the existence of fixed points of monotonic function as well as the existence
of the least and greatest one. Note, that E must be a complete lattice rather than
just an ordered set. The statement of the theorem and its proof are taken from [1].
Theorem 2.10 (Knaster-Tarski). Let (E,≤) be a complete lattice and f : E → E
be a monotonic mapping. Then

∧
Fix(f) and

∨
Fix(f) belong to Fix(f).

Proof. We will show that∧
Fix(f) =

∧
{x ∈ E|f(x) ≤ x} ∈ Fix(f)

and ∨
Fix(f) =

∨
{x ∈ E|x ≤ f(x)} ∈ Fix(f).

The proof for the second statement is dual to the first by the principle of symmetry,
so we will only show the first part. Let X = {x ∈ E|f(x) ≤ x}. We now show
that

∧
Fix(f) =

∧
X ∈ Fix(f). It holds that

∧
f(X) ≤

∧
X, because every

lower bound for f(X) is automatically a lower bound for X by definition of X.
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By monotonicity of f , f(X) ⊆ X and by Proposition 2.4,
∧
X ≤

∧
f(X), so∧

X =
∧
f(X). By Proposition 2.7, f(

∧
X) ≤

∧
f(X) and thus

∧
X ∈ X. Again

by monotonicity of f it follows that f(
∧
X) ∈ X and because

∧
X is a lower bound

for X,
∧
X ≤ f(

∧
X) ≤

∧
f(X) =

∧
(X), so

∧
X ∈ Fix(f).

Obviously (by definition of X) Fix(f) ⊆ X and so it follows that
∧
X ≤∧

Fix(f). Since
∧
X ∈ Fix(f), we get

∧
X =

∧
Fix(f).

The Knaster-Tarski theorem gives us a method, by which we can prove that a
certain element is a least (or a greatest) fixed point of a monotonic function.
Corollary 2.11. Let E be a complete lattice and f : E → E a monotonic function.
Then e ∈ E is the least fixed point of f if and only if it satisfies:

1. for each x ∈ E it holds f(x) ≤ x =⇒ e ≤ x,

2. f(e) ≤ e.

Similarly, e ∈ E is the greatest fixed point of f if and only if it satisfies:

1. for each x ∈ E it holds x ≤ f(x) =⇒ x ≤ e,

2. e ≤ f(e).

Proof. If e ∈ E is the least fixed point, then (1) follows from Knaster-Tarski theorem
2.10 and (2) is obvious. Conversely, if e ∈ E satisfies (1) and (2), then e is a lower
bound of the set X = {x ∈ E|f(x) ≤ x} and e ∈ X. Therefore e =

∧
X and by

Knaster-Tarski theorem 2.10 e is the least fixed point of f .
The part for the greatest fixed point follows from the principle of symmetry.

2.4 Properties of fixed points and nested fixed points

Before we go further, we intoduce a notation for least and greatest fixed points.
We borrow the idea from first-order logic, where we use quantifiers ∃ and ∀ to bind
variables 1. There we use notation ∃x.expr[x], to mean the variable x is bound by
the existential quantifier ∃ in some expression expr, that may involve variable x. To
avoid name collisions, we can rename the variables in the following way:

(∃x.expr[x])→ (∃y.expr[y]).

In the case of fixed points of function f we use the following notation:

• for least fixed point, we write µx.f(x),

• for greatest fixed point, we write νx.f(x).

1The same idea is used in λ-calculus abstraction, when we use the letter λ for arguments and
for a function f with f(x) = expr, where expr is some expression which may involve x, we write
f = λx.expr. This approach may be more familiar to someone with background from computer
science. The process of renaming the variables is called an α-conversion. For further information
see [3].
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Again the variable x is bound by an extremal fixed point and we may use renaming
of the variables in the following sense µx.f(x) = µy.f(y), νx.f(x) = νy.f(y). The
two notions are dual by the principle of symmetry.

We can also have functions in multiple arguments. Suppose E is a complete
lattice, F is an ordered set and f : E × F → E is a monotonic function in its two
arguments. For any y ∈ F we define fy : E → E by fy(x) = f(x, y). We denote
µx.f(x, y) to be the function from F to E defined by µx.f(x, y) = µx.fy(x) (similarly
νx.f(x, y)). The µ and ν notation seems to be the standard way to represent the
greatest and the least fixed points. The following is also adapted from [1].
Proposition 2.12. Let E be a complete lattice and F an ordered set. If f : E×F →
E is monotonic in its two arguments, then µx.f(x, y) and νx.f(x, y) are monotonic
functions from F to E.

Proof. We shall prove this using the idea from the Knaster-Tarski theorem 2.10.
Suppose y ≤ y′. We need to show µx.f(x, y) ≤ µx.f(x, y′). But by the proof of the
Knaster-Tarski theorem, we know that µx.f(x, y) =

∧
Y , where Y = {x | f(x, y) ≤

x} and µx.f(x, y′) =
∧
Y ′ where Y ′ = {x | f(x, y′) ≤ x}.

Now suppose x ∈ Y ′. Then f(x, y) ≤ x. But by monotonicity of f , from y ≤ y′ it
follows that f(x, y) ≤ f(x, y′). Therefore we have f(x, y) ≤ f(x, y′) ≤ x and Y ′ ⊆ Y .
By Proposition 2.4, we deduce that

∧
Y ≤

∧
Y ′ and so µx.f(x, y) ≤ µx.f(x, y′).

The following lemma is also called a golden lemma of µ-calculus, since it is used
many times in proofs. It enables us to reduce nested fixed points and get a simpler
expression.
Lemma 2.13 (Golden lemma of µ-calculus). Let E be a complete lattice and f : E×
E → E a monotonic function in both arguments. Then

µx.µy.f(x, y) = µx.f(x, x) = µy.µx.f(x, y)

and
νx.νy.f(x, y) = νx.f(x, x) = νy.νx.f(x, y).

Proof. We give proof only for µ-case, the case for ν is similar by the principle of
symmetry.

Let f ′(x) = µy.f(x, y) and by the definition of the least fixed point we have
µy.f(x, y) = f(x, f ′(x)). Let a = µx.f ′(x) = µx.µy.f(x, y) and b = µx.f(x, x). Now
we observe that, because a is a fixed point, a = f ′(a) = f(a, f ′(a)) = f(a, a), so b =
µx.f(x, x) ≤ a. However b = h(b, b), so b ≥ µy.f(b, y) and b ≥ µx.µy.f(x, y) = a.
Thus we have a = b and we have proven the necessary equality.

This property will be used many times to argue some simplifications of the
algorithms later and to test the correctness of implementations.

3 Piecewise linear functions
Since we are dealing with piecewise linear functions, we take a closer look at their
definition. The term itself suggests that we slice the domain of a function into
pieces and on every piece we have a linear expression. The function need not be
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Figure 2: A discontinuous monotone piecewise linear function on [0, 1]. An open
interval is indicated by an arrow for us to see, that the function takes a unique value
at every point in the domain.

continuous as we can see in the one-dimensional example in Figure 2. The domain
we are focusing on is [0, 1]n. To elaborate the notion in detail we need the following
definitions taken from [13].

3.1 Conditioned linear expressions

Definition 3.1. A linear expression in variables x1, x2, . . . , xn is an expression

q0 + q1x1 + q2x2 + . . .+ qnxn,

where q0, . . . , qn are real numbers. We say that a linear expression is rational if all
q0, . . . , qn are rational numbers.

Since we will mostly be dealing with rational linear expressions, we will omit the
word “rational" and only use the term linear expression. If however we will need
real numbers this will be explicitly written.

We write e(x1, . . . , xn) to mean a linear expression in variables x1, . . . , xn and if
we want to take real numbers r1, . . . , rn to replace the variables, we write e(~r). Lin-
ear expressions are closed under substitution, meaning that given linear expressions
e(x1, . . . , xn), e1(y1, . . . , ym), . . . , en(y1, . . . , ym) we write e(e1, . . . , en) for the substi-
tuted linear expression in variables y1, . . . , ym, which is obtained by multiplying and
adding coefficients.
Definition 3.2. A conditioned linear expression is a pair C ` e, where e is a linear
expression and C is a finite set of strict and non-strict inequalities between linear
expressions, i.e. each element in C has one of the forms

e1 ≤ e2, e1 < e2. (3.1)
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We write C(~r) to mean the conjunction of inequalities, in which variables in
C are replaced by real numbers r1, . . . , rn. We use a conditioned linear expression
C ` e to express one piece of a piecewise linear function. The domain of the piece
is the set of vectors ~r that satisfy C(~r) and the expression e sprecifies the linear
function over that domain.
Proposition 3.3. The domain {~r | C(~r)} is always convex, which means if C(~r)
and C(~s), then for all λ ∈ [0, 1] it holds that C(λ~r + (1− λ)~s).

The proof of that is not completed in [13]. To prove it, we need the following
lemma.
Lemma 3.4. If A,B ⊆ Rn are convex sets, then A ∩B is a convex set.

This is a standard easy fact about the convex sets (see [5]). Nevertheless, the
proof is very short and thus included below.

Proof. Let x, y ∈ A ∩ B, λ ∈ [0, 1]. Since A is a convex set λx + (1 − λ)y ∈ A.
Similarly λx+ (1− λ)y ∈ B. So we have λx+ (1− λ)y ∈ A ∩ B and A ∩ B is also
a convex set.

Now we can prove the proposition 3.3.

Proof. First, let us see the case, when there is only one inequality in C, say

q0 + q1x1 + . . . qnxn ≤ t0 + t1x1 + . . . tnxn.

Suppose C(~r), C(~s) and λ ∈ [0, 1]. Then if we substitute λ~r + (1 − λ)~s into first
linear expression, we get

q0 + q1(λr1 + (1− λ)s1) + . . .+ qn(λrn + (1− λ)sn) =
λ(q0 + q1r1 + . . . qnrn) + (1− λ)(q0 + q1s1 + . . . qnsn) ≤
λ(t0 + t1r1 + . . . tnrn) + (1− λ)(t0 + t1s1 + . . . tnsn) =

t0 + t1(λr1 + (1− λ)s1) + . . .+ tn(λrn + (1− λ)sn).

Thus we have a convex domain. The proof is the same for strict inequality.
The general case follows from Lemma 3.4, because when C has n constraints

it specifies a finite intersection of the convex sets associated with the individual
constraints.

We will exploit this convexity in the algorithm later on. Note that, as stated in
[13], the domain of a piece does not need to be open or closed and may be empty.
Since it is given by a set of linear inequalities, we have a clear idea of the form of the
domain. Every linear inequality gives us a half-space (a closed half-space from strict
inequality and an open half-space from non-strict inequality). We therefore have a
finite intersection of half-spaces, some closed and some open. If the inequalities were
merely non-strict, we would get a closed convex polytope (see [7]). Our domains are
more general since we allow a mix of both types of inequalities, but we can be sure,
that the closure of the domain is in fact a closed convex polytope.
Definition 3.5. A function f : [0, 1]n → [0, 1] is piecewise linear if there exists a
finite set F of conditioned linear expressions in variables x1, . . . , xn, such that the
following conditions hold:
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1. For all ~r ∈ [0, 1]n, there exists a conditioned linear expression (C ` e) ∈ F
such that C(~r) holds and

2. for all ~r ∈ [0, 1]n and every conditioned linear expression (C ` e) ∈ F , if C(~r)
holds, then f(~r) = e(~r).

We say, that such F represents f .
Note, that two conditional linear expressions (C1 ` e1) ∈ F and (C2 ` e2) ∈ F

need not have disjoint domains, however e1 and e2 must agree on any overlap.
Example 3.6. We again look at the one-dimensional example in Figure 2. The
function is given by the following conditioned linear expression:

0 ≤ x <
1

3
` 1

2
x+

1

3
1

3
≤ x <

2

3
` 1

4
x+

7

12
2

3
≤ x ≤ 1 ` 5

6
.

It is discontinuous and has its domain sliced into three pieces.

3.2 First-order theory of linear arithmetic

Giving the function via conditioned linear expressions may not be optimal if the
domain has many different pieces. We will provide an alternative way to represent
some monotonic piecewise linear functions via µ-terms (see Section 5). In order to
prove, that those terms are in fact piecewise linear functions, we will use the first-
order theory of linear arithmetic as it is done in [13]. It has linear expressions as
terms and strict and non-strict inequalities between linear expressions (see equation
(9.1)) as atomic formulas. Equality can be expressed as a conjunction of two non-
strict inequalities, i.e. e1 = e2 is expressed by (e1 ≤ e2) ∧ (e2 ≤ e1). The negation
of an atomic formula can also be expressed as an atomic formula: ¬(e1 ≤ e2) is
equal to (e2 < e1). The truth of a first-order formula is given by its interpretation
in real numbers, but we can also restrict terms to rational linear expressions and
get the theory of rational linear arithemetic. Both theories enjoy the property
of quantifier elimination, i.e. every first-order formula has an equivalent version
without quantifiers (see [14]). We will see some ideas from the proof of quantifier
elimination in Section 4.3, where we will use them to optimise constraint sets.

Every formula in frst-order linear arithmetic can be put in disjunctive normal
form. This means that it has an equaivalent formulation as a disjunction of con-
junctions of atomic formulas. This is obtained by using logical equivalences such as
distributivity laws and De Morgan’s laws.
Example 3.7. Suppose we have a formula (x1 < x2) ∨ (x2 < x3) =⇒ (x1 <
x2). We first rewrite the implication using negation and disjunction and we get
¬((x1 < x2) ∨ (x2 < x3)) ∨ (x1 < x2). Now pushing the negation inside, we get
((x2 ≤ x1) ∧ (x3 ≤ x2)) ∨ (x1 < x2), which is in disjunctive normal form.
Proposition 3.8. A function f : [0, 1]n → [0, 1] is piecewise linear if and only if its
graph {(~x, y) ∈ [0, 1]n+1|f(~x) = y} is definable by a fomula F (x1, . . . , xn, y) in the
first-order theory of linear arithmetic.
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The proposition holds for rational theory of linear arithmetic as well as the
version with reals. However the proof for both versions is basically the same, so we
will not focus on that.

Proof. We apply quantifier elimination to obtain the result. Suppose we have f rep-
resented by k conditional linear expressions. For each conditional linear expression
C ` e we construct an implication (

∧
C) =⇒ (y = e), so we have a conjunc-

tion of k such implications. We now only add range constraints for each variable∧
1≤j≤k(0 ≤ xj) ∧ (xj ≤ 1) and range constraints for y to the conjunction and we

have a formula for the graph of the function f .
Conversely, suppose F (x1, . . . , xn, y) defines a graph of f . By quantifier elimina-

tion, we can assume that F is quantifier free and in disjunctive normal form. Then
F is a disjunction of conjunctions and each conjunction K can be rewritten in the
form

(
∧

C) ∧ (
∧

1≤i≤h

y > ai) ∧ (
∧

1≤i≤k

y ≥ bi) ∧ (
∧

1≤i≤l

y ≤ ci) ∧ (
∧

1≤i≤m

y < di), (3.2)

such that the only variables in finite set of atomic formulas C and linear expressions
ai, bi, ci and di are x1, . . . , xn. Since F represents the graph of the function f , for
all reals r1, . . . rn there is at most one such s, that K(~r, s) holds and if so, then
(~r, s) ∈ [0, 1]n+1. When we have such an s, it holds that

max{ai(~r)|1 ≤ i ≤ h} < max{bi(~r)|1 ≤ i ≤ k} = s,

and
s = min{ci(~r)|1 ≤ i ≤ l} < min{di(~r)|1 ≤ i ≤ m}.

Therefore we obtain the conditioned linear expressions in the following way. For
every conjunction K in F , rewritten in the form of equation (3.2), and for every
j ∈ {1, 2, . . . , k} we include the conditioned linear expression

C, {bj > ai}1≤i≤h, {bj ≥ bi}1≤i≤k, {bj ≤ ci}1≤j≤l, {bj < di}1≤i≤m ` bj.

This dissertation concerns least and greatest fixed points of piecewise linear func-
tions, we need to ask oursleves, what the result looks like, i.e. if f : [0, 1]n+1 → [0, 1]
is a piecewise linear function, that is monotonic in the last variable xn+1, the fol-
lowing proposition 3.9 will show, that µxn+1.f is also a piecewise linear function.
Proposition 3.9. Let f : [0, 1]n+1 → [0, 1] be a piecewise linear function, that
is monotonic in the last variable xn+1, , i. e. if t, s ∈ [0, 1] and t ≤ s, then
for all x1, . . . , xn ∈ [0, 1] it holds that f(x1, . . . , xn, t) ≤ f(x1, . . . , xn, s). Then
µxn+1.f(x1, . . . , xn, xn+1) and νxn+1.f(x1, . . . , xn, xn+1) are piecewise linear func-
tions from [0, 1]n to [0, 1].

We require monotonicity to be sure, that the least fixed point exists by the
Knaster-Tarski theorem 2.10.

Proof. The proof for ν case is similar to the µ case by the principle of symmetry,
so we focus only on the least fixed point. By definition of the least fixed point,
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µxn+1.f(~x) is a function from [0, 1]n to [0, 1]. By proposition 3.8 we need to show,
that graph of µxn+1.f(x1, . . . , xn, xn+1) is definable by a formula in first-order linear
arithmetic. Let F (x1, . . . , xn, xn+1, y) be the formula for f . Then the appropriate
formula for µxn+1.f(x1, . . . , xn, xn+1) is

F (x1, . . . , xn, y, y) ∧ ∀z.(F (x1, . . . , xn, z, z) =⇒ y ≤ z).

3.3 Local algorithm

If one is just interested in computing a piecewise linear function f , then all one
needs to do is have an algorithm that, given a vector ~r as input, outputs the value
f(~r). However, for certain manipulations of functions (such as computing fixed-point
finding functions in Section 4), one needs more information. One possibility would
be to explicitly carry around the full representation of the function as a finite set
of conditioned linear expressions. However, this can be extremely large. Instead we
will work with a less explicit form of representation, namely a local algorithm, that
given a point in the domain, outputs an appropriate conditioned linear expression.
This approach is new and thus a part of an original contribution.
Definition 3.10. A local algorithm for a piecewise linear function f : [0, 1]n → [0, 1]
is an algorithm, that for r1, . . . rn ∈ [0, 1] outputs a conditioned linear expression
C ` e such that

1. C(r1, . . . , rn) holds and

2. if for any s1, . . . sn ∈ [0, 1] C(s1, . . . , sn) holds, then f(~s) = e(~s).

Furthermore, only finitely many distinct C ` e can be returned.
It is worth remarking, that an explicit representation is easily converted to a local

algorithm, and a local algorithm trivially provides a way of mapping input vectors
to output values. However, there are cases, where we have a far more efficient
representation via local algorithms (see Section 5 on µ-terms).

In Section 4 we will describe how to compute the fixed-point-finding function
µxn+1.f(. . .), which is piecewise linear by Proposition 3.9, as a local algorithm. In
order to do this, it is only required that the function f itself be given as a local
algorithm. In this sense, the operation that maps an n+ 1-argument function f to
the n-argument function µxn+1.f(. . .) can be seen as a transducer of local algorithms.
No further information about how the local algorithms carry out their computation
is required. Thus local algorithms can be viewed quite abstractly as providing a sort
of “black box”, whose internals are hidden, whose only requirement is to map input
vectors to appropriate conditioned linear expressions.

4 Iterative algorithm for finding fixed points
We now take a look at an iterative algorithm for finding least and greatest fixed
points of monotone piecewise linear functions. Let f : [0, 1]n+1 → [0, 1] be a piecewise
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linear function, that is monotone in the last variable. The function is not necessarily
monotone in other variables, but if we want to find nested fixed points, i.e. fixed
points od the piecewise linear function µxn+1.f (which is piecewise linear function
according to the Proposition 3.9), we need monotonicity in other variables as well.
Keeping in mind that the procedure for calculating greatest fixed point is dual to
the procedure for the least fixed point by the principle of symmetry, we will focus
only on the least fixed points.

One way of calculating the least fixed point would be to convert the function
µxn+1f(x1, . . . , xn, xn+1) to a formula in the first-order theory of linear arighmetic
as in Propositions 3.8 and 3.9 and then apply quantifier elimination [6]. However
constructing an efficient algorithm for quantifier elimination is known to be a hard
problem, and in this case the entire procedure is very slow, since we have to iterate
through all pieces of the domain. We present an alternative to that, where rather
than computing the enitre set of conditioned linear expressions, the algorithm works
locally and provides a single conditioned linear expression that applies to the given
input vector ~r. Since we are dealing with piecewise linear functions locally, we
represent them by local algorithms as defined in 3.10.

We are of course dealing with rational piecewise linear functions and we are in-
puting rational numbers, since the real world computers can only precisely calculate
rationals and not arbitrary reals. Because we have a working implementation of the
algorithm, this restriction in in fact necessary. However it is convenient to consider
the running of the algorithm in the general case, where r1, . . . , rn are arbitrary real
numbers in [0, 1]. This can be understood as an algorithm in the Real RAM model
of computation (see [10]). When we input rational numbers, all real numbers gen-
erated in the algorithm are rational themselves and all linear expressions generated
are rational.

4.1 Motivating the algorithm on example

The main aim of this projet is to explore an iterative algorithm for computing fixed
points of monotone piecewise linear functions. The algorithm was proposed in [13],
where proved correct. We directly present a modified version of the algorithm,
designed for improved efficiency and is an original result. The original version of
the algorithm will then be discussed by describing how it differs from the modified
version. In this section we will see the idea of the altgorithm on a one-dimensional
example inspired by [13] and comment on its properties.

Fixed point are computed by iterating through their approximations. We start
with 0 for the least fixed point and 1 for the greatest fixed point. To illustrate the
main idea we take another look at the piecewise linear function from example 3.6.
The function f : [0, 1]→ [0, 1] is given by the following conditioned linear expression:

0 ≤ x <
1

3
` 1

2
x+

1

3
1

3
≤ x <

2

3
` 1

4
x+

7

12
2

3
≤ x ≤ 1 ` 5

6
.
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We can see the graph of the function f and of the diagonal on Figure 3. Clearly f
is monotonic and it has a unique fixed point at 5

6
.

The algorithm calculates the fixed point by iteratively correcting an approxima-
tion d. We start with d = 0. Note, that simple iteration of f from 0 (like in Banach
fixed point theorem [9]) 0 ≤ f(0) ≤ f(f(0)) ≤ . . . generally does not work, since
the sequence may never reach a fixed point. In the Banach fixed point theorem this
sequence may not reach a fixed point in finite time, but it is guaranteed to converge
to one. In our setting, the limit of the sequence need not be a fixed point because
of discontinuity of f . Instead we iterate through pieces.

The initial approximation is d = 0 and we retrieve the linear piece for x = 0
given by the conditioned linear expression 0 ≤ x < 1

3
` 1

2
x+ 1

3
. The unique solution

of x = 1
2
x+ 1

3
is x = 2

3
, which is outside the domain for this piece. So we replace d

by a new approximation, given by 1
2
x + 1

3
calculated at the upper bound x = 1

3
of

the domain. Therefore the next approximation for the fixed point is x = 1
2
.

We again retrieve the linear piece for x = 1
2
, which is given by 1

3
≤ x < 2

3
`

1
4
x+ 7

12
. The solution to the equation x = 1

4
x+ 7

12
is x = 7

9
, which is again outside

the domain of the linear piece. So we find the next approximation by calculating
1
4
x+ 7

12
at x = 2

3
and we have d = 3

4
.

Finally we retrieve the last piece for x = 3
4
, which is given by 2

3
≤ x ≤ 1 ` 5

6
.

We get a candidate x = 5
6
, which in fact is in the domain of the current linear piece

and therefore the least fixed point of f . Although on this example, we examine all
pieces of the domain, that is not necessarily the case.

The general algorithm for finding fixed points of monotone piecewise linear func-
tions with n arguments, where n > 1 is substantially more complicated, because we
are calculating fixed points of linear expressions rather than just numbers.

y = f(x)

y = x

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Graph of the function f and the diagonal.

4.2 The iterative algorithm

In this section we present the iterative algorithm directly in a modified version
differing from the algorithm in [13] in certain critical aspects. The original algorithm
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has some substantial drawbacks regarding space complexity, which to some degree
resolved here and on which we comment in Section 4.2.3.

4.2.1 Modified algorithm

Input: A vector of real numbers (r1, . . . , rn) ∈ [0, 1]n, a local algorithm representing
a piecewise linear function t : [0, 1]n+1 → [0, 1], that is monotone in xn+1.

Output: A conditioned linear expression C ` e in variables x1, . . . xn with the
following properties:

(P1) C(r1, . . . , rn) holds,

(P2) for all s1, . . . , sn ∈ R, if C(~s) holds, then s1, . . . , sn ∈ [0, 1] and e(~s) =
µxn+1.t(~s, xn+1).

Initializing values: D = ∅ (current set of inequalities between linear expressions);
d = 0 (current linear expression);
loop

The loop invariants are:

(I1) D(~r) holds and

(I2) for all ~s ∈ [0, 1]n, if D(~s), then d(~s) ≤ (µxn+1.t)(~s).

We think of D as constraints propagated from previous iterations, and of d as
the current approximation of the fixed point subject to the constraints.

Using the local algorithm for t compute t(x1, . . . , xn, xn+1) at (~r, d(~r)) as C ` e,
where e has the form q0 + q1x1 + . . . qnxn + qn+1xn+1.

Arrange inequalities in C in the following way.

C ′ ∪ {xn+1 > ai}1≤i≤l′ ∪ {xn+1 ≥ ai}l′≤i≤l (4.1)
∪{xn+1 ≤ bi}1≤i≤m′ ∪ {xn+1 < bi}m′≤i≤m,

so the only variables in inequalities C ′ and linear expressions ai and bi are the
variables x1, . . . , xn.

if qn+1 6= 1 then
define the linear expression

f :=
1

1− qn+1

(q0 + q1x1 + . . . qnxn) (4.2)

if C(~r, f(~r)) then

E :=D ∪ C ′ ∪ {d ≤ f} ∪ {d > ai}1≤i≤l′ ∪ {d ≥ ai}l′≤i≤l (4.3)
∪ {f ≤ bi}1≤i≤m′ ∪ {f < bi}m′≤i≤m,

return E ` f
else
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Define N(x1, . . . , xn) to be the negation of the inequality

e1(x1, . . . , xn, f(x1, . . . , xn)) / e2(x1, . . . , xn, f(x1, . . . , xn)),

where / is used for either < or ≤ and e1(~x, f(~x)) / e2(~x, f(~x)), is the chosen
inequality in C for which e1(~r, f(~r)) / e2(~r, f(~r)) is false and go to find next
approximation below.

end if
else(case that qn+1 = 1)

if q0 + q1r1 + . . . qnrn = 0 then
return D∪C(x1, . . . , xn, d(x1, . . . , xn))∪{q0+ q1x1+ . . . qnxn = 0} ` d

else
Define N(x1, . . . , xn) to be the one of the inequalities

q0 + q1r1 + . . . qnrn < 0, 0 < q0 + q1r1 + . . . qnrn,

that is true for ~r and go to find next approximation below.
end if

end if
end loop
Find next approximation:
Consider inequalities in C arranged as in (4.1) and choose a j with 1 ≤ j ≤ m
such that bj(~r) ≤ bi(~r) for all 1 ≤ i ≤ m (we shall refer to bj as a supremum term).
If there is a candidate for a supremum term, which arises from strict inequality,
choose bj to be one such.
if bj arises from a strict inequality of the form xn+1 < bj then

go back to the loop with

D :=D ∪ C ′ ∪ {N} ∪ {d(x1, . . . , xn) < bj(x1, . . . , xn)}∪ (4.4)
{bj(x1, . . . , xn) ≤ bi(x1, . . . , xn)}1≤i≤m∪
{d(x1, . . . , xn) > ai(x1, . . . , xn)}1≤i≤l′∪
{d(x1, . . . , xn) ≥ ai(x1, . . . , xn)}l′≤i≤l

d :=e(x1, . . . , xn, bj(x1, . . . , xn))

else
all candidates for supremum term have non-strict inequalities, therefore go

back to the loop with

D :=D ∪ C ′ ∪ {N} ∪ {d(x1, . . . , xn) ≤ bj(x1, . . . , xn)}∪ (4.5)
{bj(x1, . . . , xn) ≤ bi(x1, . . . , xn)}1≤i≤m′∪
{bj(x1, . . . , xn) < bi(x1, . . . , xn)}m′≤i≤m∪
{d(x1, . . . , xn) > ai(x1, . . . , xn)}1≤i≤l′∪
{d(x1, . . . , xn) ≥ ai(x1, . . . , xn)}l′≤i≤l

d :=e(x1, . . . , xn, bj(x1, . . . , xn))
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end if
If we have a local algorithm for a monotone piecewise linear function

t : [0, 1]n+1 → [0, 1],

the iterative algorithm used on the local algorithm for t provides a local algorithm
for the function (µxn+1.t) : [0, 1]

n → [0, 1].
Let us illustrate running of the algorithm on an example.

Example 4.1. Suppose we have a function t : [0, 1]2 → [0, 1] given by a local al-
gorithm 2 and we wold like to compute µx2.t at a point x1 = 1. We start by setting
D = ∅ and d = 0. By calling the local algorithm we obtain a conditioned linear
expression C ` e with C = {0 ≤ x1, x1 ≤ 1, 0 ≤ x2, x2 ≤ 1

4
} and e = 3

8
x1 +

1
8
. The

coefficient q2 of variable x2 is 0, which is not equal to 1, so we proceed by defining
the expression f := 3

8
x1 +

1
8
. The condition C(1, f(1)) = C

(
1, 1

2

)
does not hold,

since 1
2
� 1

4
, and thus we define N(x1) :=

3
8
x1+

1
8
> 1

4
as the negation of f(x1) ≤ 1

4
.

When we simplify, we get N(x1) := x1 >
1
3
. We proceed to the subroutine find next

approximation and we find the supremum term bj(x1) :=
1
4
. It is the only candidate

and comes from a non-strict inequality, so we proceed to the second case and modify
D as the union of the following sets of inequalities:

• ∅ from previous D,

• {0 ≤ x1 ≤} from C ′,

• {x1 > 1
3
} from N ,

• {0 ≤ 1
4
} from d ≤ b,

• 0 ≤ 0 from ai ≤ d.

When put together and simplified, the new D equals to {1
3
< x1 ≤ 1}. We also

modify d to be d(x1) := e(x1, bj(x1)) =
3
8
x1 +

1
8
. We now repeat the loop and again

call the local algorithm for x1 = 1 and x2 = d(1) = 1
2
to obtain the conditioned

linear expression C ` e with C = {0 ≤ x1 ≤ 1, 1
4
≤ x2 ≤ 1} and e = 3

8
x1 +

1
2
x2. We

observe that q2 = 1
2
6= 1 and we define f(x1) := 3

4
x1. We now check the condition

C(1, f(1)) = C(1, 3
4
), which holds, and in order to return a result, we define E as a

union of the following sets of inequalities:

• {1
3
< x1 ≤ 1} from D,

• {0 ≤ x1 ≤ 1} from C ′,

• {3
8
x1 +

1
8
≤ 3

4
x1} from d ≤ f ,

2This example is taken from [13, section 3.4] and the function t is given by a µ-term(
5

8
⊕ 3

8
x1

)
�
(
1

2
t
(
3

8
⊕ 1

2
x2

))
.

For the definition of a µ-term see Section 5 below. In this example we only use the function via a
local algorithm, but the details on how the pieces of this piecewise linear function are computed
are described in Section 5 as well.
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• {1
4
≤ 3

8
x1 +

1
8
} from d ≥ ai,

• {3
4
x1 ≤ 1} from f ≤ bi.

When simplified, E equals to {1
3
< x1 ≤ 1} and we return E ` f as

{1
3
< x1 ≤ 1} ` 3

4
x1,

which is the final result.

4.2.2 Correctness and termination of modified algorithm

Theorem 4.2. Let t : [0, 1]n+1 → [0, 1] be a piecewise linear function, that is mono-
tone in the last variable and represented by a local algorithm. Then for every vector
(r1, . . . , rn) ∈ [0, 1]n of real numbers the above algorithm terminates with a condi-
tioned linear expression C~r ` e~r satisfying properties (P1) and (P2). Moreover the
set of all possible resulting conditioned linear expressions

{C~r ` e~r|~r ∈ [0, 1]n} (4.6)

is finite and thus represents the piecewise linear function µxn+1.t : [0, 1]
n → [0, 1].

The proof of the above theorem follows the correctness proof of the initial version
of the algorithm in [13]. However since there are some nontrivial modifications to
the algorithm, we will redo the proof entirely and show it in detail.

We introduce some useful terminology for the stated properties. For a monotone
piecewise linear function t, we call the cardinality of the set (4.6) of possible results
the basis size, and we call the maximum number of inequalities in any conditioned
linear expression C ` e the condition size.

Proof. First, we need to show that the loop invariants (I1) and (I2) guarantee, that
any result satisfies (P1) and (P2). By definiton of the local algorithm, the compu-
tation at (~r, d(~r)) of C ` e satisfies C(~r, d(~r)) and for all s1, . . . , sn, sn+1 ∈ Rn+1

if C(s1, . . . , sn, sn+1), then (s1, . . . , sn, sn+1) ∈ [0, 1]n+1 and e(s1, . . . , sn, sn+1) =
t(s1, . . . , sn, sn+1).

In the case that qn+1 6= 1, the linear expression f defined in (4.2), maps any
s1, . . . , sn ∈ R to the unique solution f(~s) to the equation xn+1 = e(s1, . . . , sn, xn+1)
in R. Suppose, that D(~s) holds. Then, by loop invariant (I2), d(~s) ≤ (µxn+1.t)(~s).

Let us consider the case, when C(~r, f(~r)) holds and let E be defined by (4.3).
We now show, that any ~s ∈ [0, 1]n, that satisfies constraints in E also satisfies the
constraints in the set

O = D ∪ C(x1, . . . , xn, d(x1, . . . , xn)) ∪ C(x1, . . . , xn, f(x1, . . . , xn)).

Suppose, that ~s satisfies the constraints in E. We already know that ~s satisfies
constraints in D∪C ′, where C ′ is defined by (4.1) (because those constaints appear
in E as well as in O). Now we take a look at the rest of constraints in C. We have
rearranged constraints as in equation (4.1) and now we consider each constraint
individually. If the inequality is of the form xn+1 ≤ bi then (by construction of E) ~s
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satisfies f(~s) ≤ bi(~s). Because d(~s) ≤ f(~s) (a constraint explicitly added to E), we
get d(~s) ≤ bi(~s). A similar argument applies to the other types of inequalities and
we have that ~s satisfies both C(~s, d(~s)) and C(~s, f(~s)), so ~s satisfies the inequalities
in O.

Now suppose E(~s) holds. Because this implies C(~s, f(~s)), we have t(~s, f(~s)) =
e(~s, f(~s)) = f(~s) as given by the local algorithm, i.e. f(~s) is a fixed point of the
function xn+1 7→ t(~s, xn+1). Since µ denotes the least fixed point of a function, it
holds that (µxn+1.t)(~s) ≤ f(~s). Now because both C(~s, d(~s)) and C(~s, f(~s)) hold
and d(~s) ≤ (µxn+1.t)(~s) ≤ f(~s), we have, by convexity of constraints as proven in
proposition 3.3, that t(~s, sn+1) = e(~s, sn+1) for all sn+1 ∈ [d(~s), f(~s)]. So f(~s) is the
unique fixed point of xn+1 7→ t(~s, xn+1) on [d(~s), f(~s)]. Since d(~s) ≤ (µxn+1.t)(~s),
we have f(~s) = (µxn+1.t)(~s). So the conditioned linear expression E ` f satisfies
(P2). It satisfies (P1), because we return the result if C(~r, f(~r)) and we already
know by definiton of the local algorithm, that C(~r, d(~r)) holds and by (I1) that
D(~r) holds. We only have to make sure, that d(~r) ≤ f(~r), which follows from the
fact that C(~r, f(~r)) and so d(~r) ≤ (µxn+1.t)(~r) = f(~r).

In the case that qn+1 = 1 then, for any s1, . . . , sn ∈ R the equation xn+1 =
e(s1, . . . , sn, xn+1) has a solution if and only if q0 + q1x1 + . . . qnxn = 0. Then any
xn+1 is a solution. Suppose that q0+q1s1+. . . qnsn = 0 and C(~s, d(~s)) hold. Then we
have t(~s, d(~s)) = e(~s, d(~s)) and d(~s) is a fixed point of xn+1 7→ t(~s, xn+1). Suppose
D(~s) also holds. Then by loop invariant (I2) we have d(~s) = (µxn+1.t)(~s) thus
justifying that the returned conditioned linear expression satisfies property (P2). It
satisfies property (P1) if q0+q1x1+ . . . qnxn = 0, which is the condition under which
the result is returned.

Next we have to show, that the loop invariants (I1) and (I2) are preserved. They
are trivially true for initial values D = ∅ and d = 0. Now we must show that they are
preserved, when they are modified in the subroutine find next approximation.
Let D′ be the modified D. We first consider inequalities rearranged as in (4.1).
Because C(~r, d(~r)), we must have m ≥ 1, otherwise C(~r, s) would hold for all real
s ≥ d(~r), contradicting that C(~r, s) implies s ∈ [0, 1] (similarly l ≥ 1). So there
exists j with 1 ≤ j ≤ m such that bj(~r) ≤ bi(~r) for all 1 ≤ i ≤ m.

We now show, that the constraints in D′ are true for ~r. We consider two cases.
If we modify D as in (4.4), the chosen bj arose from a strict inequality xn+1 < bj.
The constraints in D ∪C ′ ∪N are trivially satisfied by ~r. Since C(~r, d(~r)), we have
d(~r) < bj(~r), d(~r) > ai(~r) for 1 ≤ i ≤ l′ and d(~r) ≥ ai(~r) for l′ ≤ i ≤ l. By
definition of the supremum term, we have bj(~r) ≤ bi(~r) for 1 ≤ i ≤ m. In the second
case, if we modify D by (4.5) and bj comes from a non-strict inequality xn+1 ≤ bj,
we can again argue that D ∪ C ′ ∪ {N} are trivially satisfied. From C(~r, d(~r)), we
have d(~r) ≤ bj(~r), d(~r) > ai(~r) for 1 ≤ i ≤ l′ and d(~r) ≥ ai(~r) for l′ ≤ i ≤ l. By
definition of the supremum term, we have bj(~r) ≤ bi(~r) for all 1 ≤ i ≤ m, thus also
for 1 ≤ i ≤ m′. For m′ ≤ i ≤ m we have strict inequalities, which are are in fact true
for ~r, otherwise suppose there would be such i with m′ ≤ i ≤ m, that bj(~r) = bi(~r).
Since bj is a supremum term, bi would also be a candidate for a supremum term.
Because bi comes from a strict inequality this contradicts our choice of bj. Therefore
all strict inequalities are true at ~r and (I1) is preserved.

To show (I2) we again consider two cases. But because both are very similar,

19



we will look at them separately only when needed. Suppose we modify D as in
(4.4) or (4.5) and ~s satisfies the constraints in D′. We define r′ = (µxn+1t)(~s).
By the invariant (I2) for D and d we have d(~s) ≤ r′. We want to show that
e(~s, bj(~s)) ≤ r′. By the choice of N we know that N(~s) implies that C(~s, r′) does
not hold. Now we show that D′(~s) and s ∈ {d(~s)} ∪ (d(~s), bj(~s)) ∩ [0, 1] implies
C(~s, s). If we show C(~s, d(~s)) holds, then by the choice of j, C(~s, s) also holds for
s ∈ {d(~s)} ∪ (d(~s), bj(~s)) ∩ [0, 1]. To be sure of this implication let us take a look
at one type of inequalities in C, say xn+1 ≥ ai. Then we have s > d(~s) ≥ ai(~s),
so s ≥ ai(~s). A similar argument proves the implication for the other types of
inequalities in C.

Now we have to show, that C(~s, d(~s)) holds. Trivially all inequalities in C ′ are
satisfied. Now let us take a look at each type of inequality from (4.1):

• If the inequality is of the form xn+1 ≥ ai, we have d(~s) ≥ ai(~s).

• If the inequality is of the form xn+1 > ai, we have d(~s) > ai(~s).

• If the inequality is of the form xn+1 ≤ bi, we have d(~s) ≤ bj(~s) ≤ bi(~s). In case
D is modified as in (4.4), the condition is d(~s) < bj(~s), but all we need is a
non-strict inequality.

• If the inequality is of the form xn+1 < bi, we have have to consider two different
cases:

– If D is modified as in (4.4), we have d(~s) < bj(~s) ≤ bi(~s), so d(~s) < bi(~s).
– If D is modified as in (4.5), we have d(~s) ≤ bj(~s) < bi(~s), so d(~s) < bi(~s).

Because C(~s, r′) is false and the fact that d(~s) ≤ r′, we have s < r′ for every
s ∈ [0, 1] with s = d(~s) or d(~s) < s < bj(~s). Since r′ is the least fixed point for
xn+1 7→ t(~s, xn+1), it is the least such x, that t(~s, x) ≤ x and because t is a monotonic
function, we have s < t(~s, s) ≤ t(~s, r′) = r′. By the properties of the local algorithm
for t, this means

s < e(~s, s) ≤ r′. (4.7)

So we have, using the continuity of e,

e(~s, bj(~s)) = sup{e(~s, s)|s = d(~s) or d(~s) < s < bj(~s)} ≤ r′.

So in fact this is a good approximation of the fixed point. That is d(~s) < e(~s, bj(~s))
and not C(~s, e(~s, bj(~s))). The first holds by equation (4.7) if we substitute d(~s)
for s (which we can, since it is in the domain for s) and by the fact that d(~s) ≤
bj(~s) and e represents a monotonic function in the last argument. The second
is because if C(~s, e(~s, bj(~s))), then e(~s, bj(~s)) ≤ bj(~s), but we know e(~s, bj(~s)) ≥
bj(~s) (if we substitute bj(~s) for s in equation (4.7) using the definition of e(~s, bj(~s))
via supremum), so e(~s, bj(~s)) = bj(~s) = r′ (because r′ is the fixed point), which
contradicts not C(~s, r′).

To show termination, we first recall that piecewise linear functions are given by
finite sets of conditioned linear expressions, so local algorithm for t can produce only
finitely many results, say

C1 ` e1 . . . Ck′ ` ek′ , (4.8)
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where k′ is the basis size of the local algorithm of t. We analyse the execution of the
iterative algorithm on input vector ~r ∈ [0, 1]n. On iteration number i, we enter the
loop with Di and di (where D1 = ∅ and d1 = 0), after which the local algorithm for
t gives us one of the conditioned linear expressions Cki ` eki from (4.8) above, such
that Cki(~r, di(~r)) holds. Then depending on conditions involving only Cki ` eki and
~r we either return a result or continue with subroutine find next approximation to
construct Di+1 and di+1. By the previously shown inequality di(~s) < e(~s, bj(~s)) =
di+1(~s) for ~s that satisfies the constraints inDi+1, at iteration i+1, we have di+1(~r) >
di(~r) and Cki(~r, di+1(~r)) is false. Since each conditioning set is convex, it follows that
no Cj can occur twice in the list Ck1 , Ck2 , . . ., so the algorithm must exit the loop
after at most k′ iterations and the computation terminates.

We now show, that the algorithm for finding the least fixed point produces only
finitely many conditioned linear expressions C~r ` e~r.

We analyse the control flow in the algorihtm for µxn+1.t on given input vector
~r = (r1, . . . , rn). On iteration i we enter the loop with Di and di and we compute t
and to get Cki ` eki from (4.8). Suppose |Cki | = u and |Di| = v. If the loop exits
with E ` f , we have u + v + 1 inequalities. If the loop exits in the case qn+1 = 1,
we have u+ v+2 inequalities (we count = as two inequalities ≤ and ≥). Otherwise
we repeat the loop and Di+1 has at most v + 1 + 1 + u = u + v + 2 inequalities
(from D, C ′, N , d ≤ bj and one for every bi and ai). If l′ is the maximum number
of inequalities in any Cj from (4.8) (condition size of t), the algorithm for µxn+1.t,
which runs for at most k′ iterations results C~r with at most k′(l′ + 2) inequalities:
we start v with 0 and in every iteration we increase it by at most l′+2 inequalities.

To bind the number of results C~r ` e~r, we count all possible control flows of
the algorithm. At iteration i, the algorithm uses Cki ` eki from (4.8) and it might
terminate in two possible ways or it may reenter the loop in iteration i + 1 with
Di+1, which arises from either (4.4) or (4.5) in a way, that depends on the choice of
N and bj. If n = 0, we only have inequalities between numbers, and they can be
discarded. If n ≥ 1, there are at least 2 inequalities in C, giving range constraints
for x1, so there are at most l′ choices for N (l′ − 2 in case qn+1 6= 1 and 2 choices
in the case that qn+1 = 1). There are at most l′ − 2n − 1 choices for bj, which can
be estimated by l′ − 1. Therefore the execution of the algorithm is defined by the
sequence

k1, u1, k2, u2, . . . , km, um, v

where m ≤ k′ is the number of iterations, ui represents the choice of N and bj with
1 ≤ ui ≤ l′ + (l′ − 1) and v is 1 or 2, according to the case in which the result
is returned. Since each ki is a distinct number, we can bind the number of such
sequences by

2
k′∑

m=1

k′!

(k′ −m)!
(l′(l′ − 1))m−1 ≤ (k′(l′)2)k

′
.

Therefore the number of different results is indeed finite.

4.2.3 Comparison to the original version of the algorithm from [13].

As we have previously mentioned, the above version of the algorithm is an im-
provement of the original one, which differs in two places, where we construct the
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constraint sets:

(D1) In the original version of the algorithm in [13], the constraint set E contains
the inequalities

D ∪ C(x1, . . . , xn, d(x1, . . . , xn)) ∪ C(x1, . . . , xn, f(x1, . . . , xn)).

This produces a constraint set of size |D| + 2|C| instead of one of size |D| +
|C|+ 1 in our modified version of the algorithm.

(D2) In the subroutine find next approximation, the choice of the supremum
term bj does not involve the condition on strict inequalities. Any b, that
satisfies b(~r) ≤ bi(~r) for all 1 ≤ i ≤ m can be chosen for bj. Therefore we
only have one case and the new set of constraints D contains the following
inequalities:

D ∪ C(x1, . . . , xn, d(x1, . . . , xn)) ∪ {N(x1, . . . , xn)} ∪ {bj ≤ bi|1 ≤ i ≤ m}.

Recall that m is the number of constraints, that restrict xn+1 from above (the
constraints that contain the linear expressions bi). The original version of the
algorithm thus produces a constraint set of size |D| + |C| +m + 1 instead of
one of size |D|+ |C|+ 2 in our modified version of the algorithm.

Because some of these constraints are redundant, there is a substantial slowdown of
the process, that is in fact unnecessary. In the proof of correctness of the algorithm,
we have shown, that any vector ~s ∈ [0, 1]n, that satisfies the constraints in E, also
satisfies the constraints in C(x1, . . . , xn, d(x1, . . . , xn))∪C(x1, . . . , xn, f(x1, . . . , xn)),
but in E we only have half as many constraints (and an additional one, that guar-
antees d(x1, . . . , xn) ≤ f(x1, . . . , xn)). In the case (D2), every constraint in C of the
form xn+1 / bi, where / is < or ≤, appears in some form twice, but in the modified
version there is only one constraint that substitutes it, again substantially lowering
the number of constraints.

In Section 6 the impact of the optimisations in the modified version of the al-
gorithm will be experimentally investigated.

4.3 Quantifier elimination optimisation

As we have seen, the modified version of the fixed-point algorithm builds smaller con-
straint sets than the original algorithm, eliminating some redundancy in constraints
from the former. Nevertheless, it is still possible in principle that the constraint
sets constructed may contain further redundancy. In this section, we show that, in
principle, it is possible to further augment the algorithm with a procedure to remove
all redundancy from constraint sets.

Recall, that a finite set od linear inequalities represents a domain, whose closure
is a closed convex polytope. It is known that for a full-dimensional convex polytope,
the minimal description with halfspaces is unique and is given by the set of the
facet-defining halfspaces (see [7]). Since our domain is not a closed convex polytope,
we cannot guarantee uniqueness of the minimal set of inequalities. However the
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idea, that we only really need to focus on facets, leads us to believe, we may be
able to shrink the sets of constraints even further. This augmentation is an original
idea and a non-trivial conrtibution. However, the principle of quantifier elimination
is well-known, but has not been previously used in the context of improving the
conditioned linear expressions.

The main goal of this optimisation is to eliminate any unnecessary inequalities
from the constraint set C of a conditioned linear expression C ` e and so obtaining
the minimal possible set of of constraints (minimal in the sense that it contains no
redundant constraints) that represents the same domain. We introduce the termin-
ology for these properties.
Definition 4.3. Let C(x1, . . . , xn) be a set of linear constraints from a conditioned
linear expression.

• We say a constraint c ∈ C is redundant for the set of constraints C, if for all
~s ∈ Rn it holds that

(C \ c)(~s) =⇒ c(~s).

• A set of linear constraints E(x1, . . . , xn) is said to be equivalent to C, if for all
~s ∈ Rn, C(~s) holds if and only if E(~s) holds.

To tackle the task of removing redundant constraints we use quantifier elim-
ination. We will only explain how the quantifier elimination algorithm works in
the special case of a formula given by a sequence of existential quantifiers over a
conjunction of linear inequalities - which is the only case we need.

For a set of constraints C(x1, . . . , xn), we construct an equivalent reduced set
of constraints E(x1, . . . , xn) by adding constraints one-by-one and checking their
necessity. Suppose at some point we have E = {e1, e2, . . . , eN} and we would like
to add a constraint c ∈ C to the set E. The constraint is redundant, if adding its
negation to the set gives an unfeasible (meaning empty) domain, i.e. if the formula

∃x1.∃x2. . . .∃xn.

( ∧
1≤i≤N

ei(x1, . . . , xn)

)
∧ (¬c(x1, . . . , xn))

is false. Since this is a closed formula in the theory of linear arithmetic, we can apply
quantifier elimination to compute its logical value. However, if c is necessary and
we add c to the existing minimal set E, some of the constraints e ∈ E may become
redundant, as they may follow from the conjunction of c and the other constraints
in E. If we want the set E to still be minimal, we need to check for all inequalities
e ∈ E, if they are redundant for the set E ∪ {c}.

We use the following procedure.
Input: A set of constraints C(x1, . . . , xn).
Output: A reduced set of constraints E(x1, . . . , xn).

E := ∅
for all c(x1, . . . , xn) ∈ C(x1, . . . , xn) do
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Using quantifier elimination, test if the formula

∃x1.∃x2. . . .∃xn.

(∧
e∈E

e(x1, . . . , xn)

)
∧ (¬c(x1, . . . , xn))

is true.
if the formula is false then

continue the for loop without adding c to E.
else

U = ∅ (set of redundant constraints)
for e ∈ E do

Using quantifier elimination, test if the formula

∃x1.∃x2. . . .∃xn.

 ∧
d∈E\(U∪{e})

d(~x)

 ∧ (c(~x)) ∧ (¬e(~x))

is true.
if the formula is false then

U := U ∪ {e}
end if

end for
E := (E \ U) ∪ {c}

end if
end for

Theorem 4.4. Given a set of constraints C(x1, . . . , xn), the above procedure yields
a subset of constraints E(x1, . . . , xn) ⊆ C(x1, . . . , xn), with the following properties:

1. The constraint sets C and E are equivalent, i.e. for every ~s ∈ Rn, C(~s) holds
if and only if E(~s) holds.

2. Every constraint c ∈ E is necessary in E, i.e. there exists ~s ∈ Rn such
that (E \ c)(~s) holds, but c(~s) does not. Equivalently there are no redundant
constraints in E.

Proof. Since all the for loops go through finite sets, the procedure in fact terminates.
We also observe that at every point, where we add constraints to E, they originate
from C, we have E ⊆ C. We now only need to prove the two properties.

To prove the equivalence of the two sets, we need to consider both implications.
Since E ⊆ C, every ~s ∈ Rn that satisfies C(~s), automatically satisfies E(~s), because
all the constraints in E are included in C and thus satisfied. So the first implication
is trivial.

To prove the other implication it is useful to state the following property of the
procedure: Let

E1, E2, E3, . . . , E|C| = E

be the sets E after every iteration of the outer for loop. If for ~s ∈ Rn, E|C| holds,
then E|C|−1(~s), . . . , E1(~s) all hold. Suppose for some i with 1 ≤ i ≤ |C|, Ei+1(~s)
holds. We want to prove, that Ei(~s) holds. If Ei = Ei+1 (in case we never enter the
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second for loop), we have nothing to prove. Otherwise, since Ei+1 = (Ei \Ui)∪{ci},
we only need to check that Ui(~s) holds. Let Ui,1, . . . , Ui,m = Ui be the sets U when
the inner for loop iterates at the i-th iteration of the outer loop, where m = |Ei|.
Let j be the smallest index such that Ui,j = Ui (thus the last constraint ej is added
to Ui at stage j). Since the formula

∃x1.∃x2. . . .∃xn.

 ∧
d∈Ei\(Ui,j−1∪{ej})

d(~x)

 ∧ (ci(~x)) ∧ (¬ej(~x))

is false, we can substitute ~s for ~x and we get false formula ∧
d∈Ei\(Ui,j−1∪{ej})

d(~s)

 ∧ (ci(~s)) ∧ (¬ej(~s)).

Because Ei \ (Ui,j−1 ∪ {ej}) = Ei+1 \ {ci}, Ei+1(~s) holds and ci ∈ Ei+1, the only
inequality in the conjunction, that can be false is ¬ej(~s). Therefore ej(~s) is true.
The overall argument proceeds by taking the index j down from m to 0, at each
stage establishing that ~s satisfies Ei \ Ui,j. At the end Ui,0 is ∅, so ~s satisfies Ei.

Now suppose there exists a vector ~s ∈ Rn, such that E(~s) holds, but C(~s)
does not. So there exists a constraint c ∈ C \ E, such that c(~s) is false. Let us
look the point in the algorithm, say iteration i, where the outer for loop considers
the constraint c. The algorithm first checks whether c is redundant for the set of
constraints Ei−1 ∪ {c}. By previously shown, since E(~s) holds, so do Ei(~s) and
Ei−1(~s) and because c(~s) is not true, c is not redundant for the set Ei−1 ∪ {c}.
Therefore Ei contains the constraint c. Since c /∈ E, there is a point, say at iteration
j, at which c ∈ Uj and so

∃x1.∃x2. . . .∃xn.

 ∧
d∈Ej\(U∪{c})

d(~x)

 ∧ (cj(~x)) ∧ (¬c(~x))

is false. But if we substitute ~s for ~x, the formula ∧
d∈Ej\(U∪{c})

d(~s)

 ∧ (cj(~s)) ∧ (¬c(~s))

is true, because c(~s) is false, but Ej(~s) and Ej+1(~s) (and subsequently cj(~s)) hold.
So we have reached a contradiction and we have thus proven, that C and E are
equivalent.

For the second property, suppose that there exists a constraint c ∈ E, that is
redundant. We consider the point in the algorithm, say at iteration i of the outer
loop, at which the constraint became such. If this is when the constraint is first
added to Ei, we check, that it is indeed necessary for the set Ei−1 from previous
iteration. So the only way for it to become redundant is when another constraint
ci ∈ C is added to the set Ei. Before we add ci to Ei−1, we check whether c is
redundant for the set (Ei−1 \ U) ∪ {ci} (where U = Ui,k for some 1 ≤ k ≤ |Ei−1|)
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and since Ei ⊆ (Ei−1 \ U) ∪ {d}, c cannot be redundant for Ei and we reach a
contradiction. It is useful to observe, that this property is the invariant of the outer
for loop: After every iteration, the current set of constraints E does not contain any
redundant constraints.

The result, that the procedure returns, depends on the order in which we iterate
through the set of constraints. To illustrate this we look at the following example.
Example 4.5. Let us consider a two-dimensional domain

([0, 1]× [0, 1]) \ {(0, 0), (1, 0), (0, 1), (1, 1)},

which is a unit square without its vertices (see figure 4). We can describe this area

-x + 2

x - 1

-0.5 0.5 1.0 1.5

-0.5

0.5

1.0

1.5

Figure 4: A unit square without its vertices.

in many ways, but let us choose the following set of inequalities:

C = {x ≤ 1, 0 ≤ x, y ≤ 1, 0 ≤ y, y < x+1, y < −x+2, y > −x, y > x−1, y > −1

2
x}.

Clearly, this is not the minimal set of inequalities, since there are two different con-
straints, that exclude the vertex (0, 0): y > −x and y > −1

2
x. Whichever of the

constraints the algorithm considers first, will end up in the resulting set of con-
straints E. Both options are equivalent and produce a set with the same number of
constraints.

The above example, which shows the non-uniqueness of minimal sets, contrasts
with the situation for closed convex polytopes, for which it is known that a unique
minimal set exists [7].
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Question 4.6. Given a set of constraints C(x1, . . . , xn), the above procedure yields
a minimal subset of constraints E(x1, . . . , xn) ⊆ C(x1, . . . , xn), i.e. if there exists
another subset F ⊆ C, that is equivalent to C, then |E| ≤ |F |.

In particular a positive answer to the question means, that all the sets of con-
straints, that do not contain any redundant constraints (equivalently all possible
results of the procedure), have the same cardinality. If we could prove this, it would
be a first step towards proving the above question.

The procedure described above involves simplifying formulas via quantifier elim-
ination, which is a known problem (see [14]). The benefit of this is that the con-
straint sets used in the representation of a piecewise linear function are kept to
minimum size. A potential drawback is the time required by the algorithm that
reduces the constraint sets. The practical ramifications of this space/time trade-off
will be explored in Section 7. Suppose we have a formula in first-order theory of
linear arithmetic

∃x1.∃x2. . . .∃xn.

( ∧
1≤i≤N

ci(~x)

)
,

where ci(~x) are (strict or non-strict) inequalities between linear expressions in vari-
ables x1, . . . , xn. We would like to obtain the equivalent formula without (existen-
tial) quantificators. We start by eliminating ∃xn and then proceed by eliminating
∃xn−1,∃xn−2, . . . ,∃x1. We rearrange inequalities in

∧
1≤i≤N ci(~x), to be of the form

∃x1.∃x2. . . .∃xn.
∧

C ′ ∧

( ∧
1≤i≤l′

xn > ai

)
∧

( ∧
l′<i≤l

xn ≥ ai

)
(4.9)

∧

( ∧
1≤i<m′

xn ≤ bi

)
∧

( ∧
m′≤i≤m

xn < bi

)
,

where inequalities in C ′ and linear expressions ai, bi do not contain the variable xn.
The equivalent formula without xn is

∃x1.∃x2. . . .∃xn−1.
∧

C ′ ∧

( ∧
1≤i≤l′

∧
1≤j≤m

ai < bj

)
∧ (4.10)( ∧

1≤i<m′

∧
l′<j≤l

aj ≤ bi

)
∧

( ∧
m′≤i≤m

∧
1≤j≤l

aj < bi

)
.

We iteratively apply the procedure and obtain the equivalent quantifier-free formula.
This algorithm causes an exponential blow up in the size of the formula and is con-
sequently rather slow and has a high space complexity. There are two main measures
of the size of the formula: number of existential quantifiers n (which corresponds
to dimension), and number of conjuncts N (which corresponds to the constraint set
size). To obtain some sort of a worst-case asymptotic formula, we consider how big
the blow-up is after eliminating only one quantifier. We observe, that by eliminating
∃xn, we obtain a conjunction of at most O(N2) linear inequalities. After we do that
for every existential quantifier, we get un upper bound O(N2n). The good news is
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it is the dimension that is the exponent, and in the examples we later consider this
number is relatively small, whereas the constraint set can be huge.

However only when we combine the two procedures to obtain an optimised con-
straint set in the iterative algorithm for finding fixed points from Section 4, the sets
are small enough for the computer to deal with. Still, in the worst case, we apply
quantifier elimination O(|C|2) (quadratically) many times in the iterative algorithm
for finding fixed points, which sums up to be quite time consuming. We comment
more on that in Section 7, where we present the results of the implementations.

5 µ-terms
A nice source of monotonic piecewise linear functions are Łukasiewicz µ-terms as
presented in the article [13]. They are terms in Łukasiewicz many-valued (also
called “fuzzy") logic (see [8]) extended with the operations of least and greatest
fixed point. The motivation for considering such terms comes from specification
logics for probabilistic systems. Let us take a look at the definition of a µ-term.

We use the following grammar

t ::= x | 0 | 1 | rt | t t t | t u t | t⊕ t | t� t | µx.t | νx.t,

where r is a real (sometimes restricted to rational) number between 0 and 1, x ranges
over a countably infinite set of variables, t and u are Łukasiewicz weak disjunction
and Łukasiewicz weak conjunction respectively, ⊕ and � are Łukasiewicz strong
disjunction and Łukasiewicz strong conjunction respectively, µ denotes the least
fixed point and ν denotes the greatest fixed point. We write t(x1, . . . xn) to mean
all variables of the term t are contained in the set {x1, x2, . . . xn} and we interpret
such a term t as a function [0, 1]n → [0, 1], by defining the value t(~r) of t(x1, . . . , xn)
applied to a vector (r1, . . . , rn) ∈ [0, 1]n in the following way:

xi(~r) = ri, 0(~r) = 0, 1(~r) = 1 variables and constants
(qt)(~r) = q · t(~r) scalar multiplication

(t1 t t2)(~r) = max{t1(~r), t2(~r)} Łukasiewicz weak disjunction
(t1 u t2)(~r) = min{t1(~r), t2(~r)} Łukasiewicz weak conjunction

(t1 ⊕ t2)(~r) = min{t1(~r) + t2(~r), 1} Łukasiewicz strong disjunction
(t1 � t2)(~r) = max{t1(~r) + t2(~r)− 1, 0} Łukasiewicz strong conjunction

We say that a µ-term t is rational, if all scalars q appearing in scalar multiplications
in t are rational numbers. The connectives above, every term t(x1, . . . , xn) defines a
continuous function from [0, 1]n to [0, 1]. In order to obtain least and greatest fixed
points to the function, we can use the Brouwer fixed point theorem ([12]). However,
solutions of fixed point expressions are not necessarily themselves continuous as
shown by the following example.
Example 5.1. Consider the µ-term x ⊕ y (taken from [13]) and its least fixed
point µy.(x⊕ y). This term defines a function, which we might naturally express as
µy.min{x + y, 1}. We show that this function is not continuous. Now we consider
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two different cases, depending on the minimum. If the minimum is at x+ y, to find
the fixed point, we need to solve the equation y = x+ y, which has a solution x = 0.
If however the minimum is at 1, we have y = 1, but this is only under the condition,
that 1 ≤ x + y. Since y = 1, we get the condition x > 0. When we put the two
conditions together, we have

µy.(x⊕ y) =

{
1 if x > 0,

0 otherwise.

This example means that Brouwer’s theorem cannot be invoked to interpret
terms with iterated fixed point constructions, since Brouwer’s theorem only applies
to continuous functions.

We extend the table defining the value t(~r) of t(x1, . . . , xn) applied to a vector
(r1, . . . , rn) ∈ [0, 1]n with the following :

(µy.t(x1, . . . xn, y))(~r) = lfp(r′ 7→ t(~r, r′))

(νy.t(x1, . . . xn, y))(~r) = gfp(r′ 7→ t(~r, r′))

where lfp and gfp are the operators returning the least and greatest fixed point
respectively. Fixed points bind the variables as seen in the Section 2.4 on fixed
points. A µ-term t is closed, if all its variables are bound by fixed points. A closed
(rational) term t denotes a function from [0, 1]0 to [0, 1], i.e. it denotes a (rational)
number in [0, 1]. But in order for all this to be well defined and and the fixed points
to exist and be unique by the Knaster-Tarski theorem 2.10, we need to show, that
terms are monotonic functions (in all arguments).
Proposition 5.2. A µ-term t(x1, . . . , xn) always defines a monotonic function from
[0, 1]n to [0, 1].

The proof is not included in [13] and is therefore given here in detail.

Proof. The proof goes by induction on the structure of t. Suppose ~r, ~s ∈ [0, 1]n with
~r ≤ ~s, i.e. for every i, with 1 ≤ i ≤ n it holds that ri ≤ si. Now consider the
following cases.

• If t = xi, then t(~r) = ri ≤ si = t(~s).

• If t = 0, then t(~r) = 0 = t(~s).

• If t = 1, then t(~r) = 1 = t(~s).

• If t = qt′, then t(~r) = qt′(~r) ≤ qt′(~s) = t(~s).

• If t = t1 t t2, we have by induction hypothesis t1(~r) ≤ t1(~s) and t2(~r) ≤ t2(~s).
Without loss of generality, we can assume, that t(~r) = t1(~r). So we have
t(~r) = t1(~r) ≤ t1(~s) ≤ max{t1(~s), t2(~s)} = t(~s). Therefore t(~r) ≤ t(~s) holds.

• If t = t1 u t2, we have by induction hypothesis t1(~r) ≤ t1(~s) and t2(~r) ≤ t2(~s).
By definition of the minimum, we have t(~r) ≤ t1(~r) ≤ t1(~s) and t(~r) ≤ t2(~r) ≤
t2(~s). So we have t(~r) ≤ min{t1(~s), t2(~s)} = t(~s). Therefore t(~r) ≤ t(~s) holds.
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• If t = t1 ⊕ t2, we have by induction hypothesis t1(~r) ≤ t1(~s) and t2(~r) ≤ t2(~s).
Then t(~r) = min{t1(~r) + t2(~r), 1} ≤ min{t1(~s) + t2(~s), 1} = t(~s).

• If t = t1 � t2, we have by induction hypothesis t1(~r) ≤ t1(~s) and t2(~r) ≤ t2(~s).
By definition of t, we have t(~r) = max{t1(~r) + t2(~r) − 1, 0}. Now we need to
consider the following cases.

– If t(~r) = 0 and t(~s) = 0, then we trivially have t(~r) ≤ t(~s).

– If t(~r) = 0 and t(~s) > 0, then t(~r) ≤ t(~s).

– If t(~r) > 0, then t(~r) = t1(~r) + t2(~r)− 1 ≤ t1(~s) + t2(~s)− 1 = t(~s).

• If t = µxn.t
′ or t = νxn.t

′, the appropriate function is monotonic due to
Proposition 2.12.

So by the Knaster-Tarski theorem 2.10, least and greatest fixed points of µ-
terms exist and are unique. We motivated µ-terms as a source of piecewise linear
functions. Accordingly, we next show that µ-terms indeed define piecewise linear
functions. We do that by representing their graph as a formula in first-order theory
of linear arithmetic. Because we have already proven in Proposition 3.8, that such
formulas represent only piecewise linear functions, this property is sufficient.
Proposition 5.3. For every Łukasiewicz µ-term t(x1, . . . , xn), its graph

{(~x, y) ∈ [0, 1]n+1|t(~x) = y}

is definable by a fomula Ft(x1, . . . , xn, y) in the first-order theory of linear arithmetic.

Proof. We again prove by induction on the structure of t. Since the formulas are
more or less self-explanatory, we do not need additional comments on them. Not all
cases are done in [13], but here we present all of them.

• If t = 0, then Ft(y) is the formula 0 ≤ y ∧ y ≤ 0.

• If t = 1, then Ft(y) is the formula 1 ≤ y ∧ y ≤ 1.

• If t = x, then Ft(x, y) is the formula (0 ≤ y) ∧ (y ≤ 1) ∧ (0 ≤ x) ∧ (x ≤
1) ∧ (x ≤ y) ∧ (y ≤ x).

• If t = r · t′, then Ft(~x, y) is the formula Ft′(~x,
y
r
).

• If t = t1 t t2, then Ft(~x, y) is the formula ∃z1, z2.Ft1(~x, z1)∧Ft2(~x, z2)∧ ((z1 ≤
z2 ∧ y = z2) ∨ (z2 ≤ z1 ∧ y = z1)).

• If t = t1 u t2, then Ft(~x, y) is the formula ∃z1, z2.Ft1(~x, z1)∧Ft2(~x, z2)∧ ((z1 ≤
z2 ∧ y = z1) ∨ (z2 ≤ z1 ∧ y = z2)).

• If t = t1⊕ t2, then Ft(~x, y) is the formula ∃z1, z2.Ft1(~x, z1)∧Ft2(~x, z2)∧ ((z1 +
z2 ≤ 1 ∧ y = z1 + z2) ∨ (1 ≤ z1 + z2 ∧ y = 1)).

• If t = t1 � t2, then Ft(~x, y) is the formula ∃z1, z2.Ft1(~x, z1) ∧ Ft2(~x, z2) ∧ ((0 ≤
z1 + z2 − 1 ∧ y = z1 + z2 − 1) ∨ (z1 + z2 − 1 ≤ ∧y = 0)).
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• If t = µxn+1.t1, then Ft(~x, y) is the formula Ft1(~x, y, y) ∧ ∀z.(Ft1(~x, z, z) =⇒
y ≤ z).

• If t = νxn+1.t1, then Ft(~x, y) is the formula Ft1(~x, y, y) ∧ ∀z.(Ft1(~x, z, z) =⇒
z ≤ y).

Thus we see, that µ-terms are in fact a source of monotone piecewise linear
functions. The reverse statement is still an open question:
Question 5.4. Is every monotone (rational) piecewise linear function f : [0, 1]n →
[0, 1] definable by a (rational) µ-term t(x1, . . . , xn)?

McNaughton’s Theorem (see [11]) famously classifies the functions defined by
Łukasiewicz formulas without scalar multiplication as the continuous piecewise linear
functions on [0, 1] with integer coefficients. A positive answer to the Question 5.4
would provide an analogus result for the Łukasiewicz µ-calculus.

5.1 Algorithm for evaluating µ-terms

We now present an algorithm for computing the function defined by a µ-term t,
which works recursively following the structure of t. We have seen that every µ-
term defines a monotone piecewise linear function, and our algorithm will compute
this function as a local algorithm in the sense of 3.10. This means that least-fixed-
point expressions can be computed using the algorithm we gave in Section 4, and
greatest-fixed-point expressions can be computed using a dual algorithm (by the
principle of symmetry). The other operations of the calculus are dealt with as
described below. In [13], the cases are not considered in such detail.
Input: A rational µ-term t(x1, . . . , xn) and a vector of rationals (r1, . . . , rn) ∈ [0, 1]n.
Output: A rational conditioned linear expression C ` e in variables x1, . . . xn with
the following properties:

(P1) C(r1, . . . , rn) holds,

(P2) for all s1, . . . , sn ∈ R, if C(~s) holds, then s1, . . . , sn ∈ [0, 1] and e(~s) =
µxn+1.t(~s, xn+1).

The algorithm works recursively on the structure of the term t.
if t = 0 then

return ∅ ` 0
end if
if t = 1 then

return ∅ ` 1
end if
if t = x then

return {0 ≤ x, x ≤ 1} ` x (range constraints need to be present)
end if
if t = rt1 then
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recursively compute C1 ` e1 for t1.
return C1 ` re1

end if
if t = t1 t t2 then

recursively compute C1 ` e1 for t1 and C2 ` e2 for t2.
if e1(~r) ≤ e2(~r) then

return C1 ∪ C2 ∪ {e1 ≤ e2} ` e2
else

return C1 ∪ C2 ∪ {e1 ≥ e2} ` e1
end if

end if
if t = t1 u t2 then

recursively compute C1 ` e1 for t1 and C2 ` e2 for t2.
if e1(~r) ≤ e2(~r) then

return C1 ∪ C2 ∪ {e1 ≤ e2} ` e1
else

return C1 ∪ C2 ∪ {e1 ≥ e2} ` e2
end if

end if
if t = t1 ⊕ t2 then

recursively compute C1 ` e1 for t1 and C2 ` e2 for t2.
if e1(~r) + e2(~r) ≤ 1 then

return C1 ∪ C2 ∪ {e1 + e2 ≤ q} ` e1 + e2
else

return C1 ∪ C2 ∪ {e1 + e2 ≥ 1} ` 1
end if

end if
if t = t1 � t2 then

recursively compute C1 ` e1 for t1 and C2 ` e2 for t2.
if e1(~r) + e2(~r)− 1 ≥ 0 then

return C1 ∪ C2 ∪ {e1 + e2 − 1 ≥ 0} ` e1 + e2 − 1
else

return C1 ∪ C2 ∪ {e1 + e2 − 1 ≤ 0} ` 0
end if

end if
if t = µxn+1.t1or νxn+1.t1 then

Run algorithm for finding fixed points from Section 4 with a recursive call to
evaluate t1 as the input to local algorithm. The greatest fixed point is computed
using a dual algorithm. Then return the result.
end if

6 Implementation of the algorithm
We implemented the algorithm for finding fixed points of monotone piecewise linear
functions via evaluating µ-terms. The implementation subsumes all four versions of
the algorithm: the original one from [13], the modified one, and each of those versions
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equipped with quantifier elimination optimisation. The entire implementation and
results are an original contribution.

The full source code of the implementation in python 3 is accessible at https://
bitbucket.org/AnjaPetkovic/evaulating-mu-terms. We strongly recommend
to examine the README.md file before running the code, since there is a short
tutorial about the specifications of the implementation. Here, we present only some
ideas of the implementation and how the algorithm works. We are always working
with µ-terms instead of piecewise linear functions themselves, so the code is adapted
for the purpose of evaluating terms.

6.1 The class of µ-terms

µ-terms are generated using the muTerm class. A muTerm has a simple tree struc-
ture with the following attributes: operator (the outmost type of the term), sub-
term1, subterm2, value and name. The value is only relevant for constants and
rational multiplication, whereas the name is only relevant for variables and operat-
ors µ and ν. The default value for unnecessary attributes is None. To construct a
term µy.(x� y) we need to write the following code.

term = muTerm( ’mu ’ ,
muTerm( ’ . ’ ,
muTerm( ’ var ’ ,None , None , ’ x ’ ) ,
muTerm( ’ var ’ ,None , None , ’ y ’ ) ,
None , None ) ,

None , None , None , ’ x ’ )

The names of the variables can be strings or numbers. It is convenient to have
canonical names for bound variables. Therefore for closed terms, we apply the fol-
lowing convention: the outer variable is named var(1), then var(2) etc. For example
the cannonical names for variables in term µx.µy.(x� y) are

µ var(1).µ var(2).( var(1)� var(2)).

Because this is not usually the way we input a µ-term, we have a function re-
name_variables to take care of it for us.

It is also useful for testing, to adapt the µ-terms in an equivalent form according
to the golden lemma of µ-calculus 2.13 to eliminate all consecutive (nested) µs and
νs. We achieve that by calling the function eliminate_consequent_mu.

6.2 Generating examples

Since meaningful examples that arise from probabilistic model-checking problems
are difficult to construct, we test the algorithm on random µ-terms. We consider
two versions of terms: floating point and (exact) rational. In the first version, a
rational number represented as a floating point number (for which the computuation
is approximate due to floating point issues), in the second version, we use python’s
class Fraction, to represent rational numbers as fractions, and the computations are
done precisely. The deficiencies of floating point is discussed with other results in
Section 7.
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To measure the algorithm’s performance, we need to compare examples with the
same number of fixed points. For convenience, we put all the fixed points on the
outside, i.e. the randomly constructed examples are of the form

µx1.νx2.µx3. . . . µxn.t(x1, . . . , xn),

where t does not itself contain any fixed point constructions. Of course the least and
greatest fixed points do not necessarily interleave, but if they do not, we can apply
the function to eliminate consequent µs and νs and leave us with an equivalent,
but smaller term. However in the file random_example_generator.py we can find
functions that generate µ-terms with fixed points interleaving and µ-terms with
consequent µs and νs. Those last ones are used for testing that the results are the
same by all versions of the algorithm and the same as for the reduced µ-term after
applying eliminate_consequent_mu function.

Because we are generating rational terms, we need to provide rational scalars for
scalar multiplication. There are two possible approaches to this task. First, we can
choose a random real number on [0, 1] and convert it to an exact rational (by taking
its finite representation in the computer). However we would like to have examples
with small denominators, so we take a different approach. If at any point we choose
a scalar, we do it by the following procedure:
m := 2
while True do

uniformly at random choose an integer i such that 1 ≤ i ≤ m.
if i = m then

uniformly at random choose an integer j such that 1 ≤ i ≤ m.
return j

m

end if
m := m+ 1

end while
This procedure provides us with a fraction of small rationals. We encounter the
problem, when fraction is in lowest term. Therefore there are many different ways
to obtain a certain rational number. For example 1 = 2

2
= 3

3
= · · · . However if

we regard fractions in their rudimentary form as a pair of integers, we obtain the
following distribution: Let k,m ∈ Z+, then

P
(
X =

k

m

)
=

(
m−1∏
n=2

(
1− 1

n

))
1

m2
=

1

m− 1
· 1

m2
.

To obtain this formula, we think in the following terms. For m to be chosen as a
denominator, all 2, 3, . . .m−1must not be chosen, so we get a product of expressions
(
(
1− 1

n

)
). Then at iteration m, the correct denominator is chosen with probability

1
m

and again the nominator is chosen with the same probability as the denominator.
If we still desire to calculate the probability of X being a concrete rational number,
we need to calculate the sum

P
(
X =

k

m

)
=
∞∑
n=1

P
(
X =

nk

nm

)
=
∞∑
n=1

1

nm− 1
· 1

n2m2
,
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where k,m ∈ Z+ such that gcd(k,m) = 1. The procedure for randomly generating
scalars can never generate 0. However, as it is later on described, we can generate
a term 0 via choosing it as an operator.

The algorithm has the property that, although it terminates with probability
1, the expected number of iterations of the while loop until termination is infinity.
Equivalently, the denominator has infinite expectation. Interestingly enough, we
never get long delays in randomly choosing a scalar.

To generate random terms, we randomly choose operators. But because we do
not want the terms to get too big, every fifth operator needs to add an unused
variable to the term. When we reach an assigned number of free variables, we close
the term with µs and νs. And thus provide a random closed term. We only need to
rename its variables, to be used in further process.

This procedure of generating random terms is clearly ad hoc. Nevertheless it
proved sufficient in practice to generate examples that led to interesting behaviour
of the algorithm.

6.3 Algorithm evaluate

The algorithm for evaluating µ-terms (and in its most interesting part, calculating
fixed points of monotonic piecewise linear functions) deals with conditioned linear
expressions of the form C ` e. Since sets are inconvenient to maintain in the
computer, we use lists.

Every linear expression
q0 + q1x1 + . . . , qnxn

is represented by a list of the form

[q0, q1, . . . , qn].

Because the variables are named in a canonical way, we store the i-th coefficient
of the linear expression at the i-th place (starting the counting from 0). When we
want to apply a linear expression to a vector ~r ∈ [0, 1]n, we merely do the scalar
product of the two lists. But we need to be careful, since the lists, that represent
linear expressions, have one extra element, q0, whereas ~r has exactly n components.

The inequalities between linear expressions e1 / e2 (where / denotes <, ≤, > or
≥) are stored as a triple

(/, e1, e2),

where e1 and e2 are of course the lists like above and / is given by a string. A
conditioned linear expression C ` e is a pair (C, e), where C is represented by a list
of inequalities (triples) and e is a list (as appropriate for a linear expression).

The implementation follows the algorithm algorithm from Section 5.1 for evalu-
ating µ-terms using given data structures described above. When inequalities have
to be rearranged as for example in equation (4.1), we do the appropriate manipula-
tions on the lists. We also have to be careful when using division, in order to make
sure the resulting lists are still of the same types and dealing with exact rationals.

There are 4 different versions of the evaluating algorithm. The original version,
adapted from the article [13], is subsumed in the function evaluate, that takes three
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arguments: the µ-term, the vector ~r and a boolean determining whether we would
like to test the performance of the algorithm in this example or not.

Next we can add optimization of the constraint sets via quantifier elimination
to the original version of the algorithm. At every point, when we change a set
of constraints, we optimize it via the procedure described above in Section 4.3 for
getting rid of redundant inequalities. This shrinks the constraint sets and enables
further computations, when we would otherwise run out of memory. To use this
procedure, we call the function evaluate_optimized.

The last two versions follow the same pattern. First we evaluate µ-terms using
the modified algorithm for calculating fixed points, as described in Section 4.2.1.
Second, we again combine this modified algorithm with optimisation of the con-
straint sets via quantifier elimination. This is done by calling the function evalu-
ate_optimized_direct with an additional argument quantifier_elimination, which is
a boolean, that determines whether the constraint sets are being optimized or not.

6.4 Testing the performance

The main purpose of implementation is testing the performance of the algorithm
(in all four versions). There is always a question as to what are good performance
measures for such procedures. There seems to be many options, from the basis size
and the conditon size, that we have already encountered in Section 4.2.2, to the
actual amount of time, the algorithm spends on computing the result. Since we
can only run the algorithm on one vector at the time, calculating the basis size is
practically impossible for bigger terms (with a lot of fixed points to compute). We
also need to find a properties that will highlight the differences between different
versions of the algorithm.

We have therefore decided to measure the following performance properties:

• number of repetitions of the main loop in the fixed-point algorithm (e.g., in
the case of the third implementation (modified algorithm without redundancy
removal), the “loop” marked in the algorithm in Section 4). In the implement-
ation, we call this the “while” loop,

• actual time spent on the computation (in seconds),

• maximal size of a constraint set encountered during the computation.

The first two properties measure how slow is the process, whereas the third property
is a measurement of space complexity. We expect the two to be correlated. In
particular, one expects large constraint sets to take time to process.

In order to perform the tests, we have constucted so called benchmark examples,
a list of µ-terms with specific properties, namely we determine how many µs and
νs are at the beginning of a µ-term (see Section 6.2 for details). We have con-
structed hundreds of terms, that all have the same number of µs and νs, which
either interleave or appear in a consecutive order (first all µs, then all the νs). To
check that the programs work correctly, we have then run all four versions of the
algorithm on the examples and made sure, that we get the same results. For the
terms with consecutive fixed points, we hve checked, that the terms, reduced by the
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function eliminate_consequent_mu, also produce the same results. However by “the
same results” we mean the linear expression (in our case the number obtained from
evaluating closed term) and not the set of constraints.

While measuring the performance, we have run the algorithms on examples with
the total number of µs and νs ranging from 0 to 9, making 10 examples for each
number of fixed points, and then we looked at the average performance, the median
and the worst case. Even though an average out of 10 does not give us very steady
results, we can see certain trends in the performance. The reason for such small
number of fixed points is, that the algorithms (especially the original one from [13])
are so slow and space-consuming, that we simply cannot run any bigger examples
on an ordinary computer. If however we apply quantifier elimination to a modified
version of the algorithm, we can get further than that (up to 15 fixed points),
although the computation is still very slow and thus time-consuming.

The testing is done in the file test.py, graphs of performance are generated by
the script in graphs.py and results are compared by the script comparison.py.

7 Results
First, let us consider the issues, when the terms are not presented with exact rational
numbers. Because we have to check certain equalities between rational numbers in
the algorithm (for example qn+1 = 1), which cannot be properly done if we are not
dealing with exact rationals, the algorithm does not necessarily terminate. Such
examples are written in the file problematic_examples.py. Therefore we only deal
with the version, where we use exact rational numbers, modelled by the python’s
module Fractions.

In order to evaluate the performance of each version of the algorithm, we take a
look at the following graphs of performance properties according to the number of
fixed points in the term being evaluated. We note, that we have graphs in logarithmic
(base 10) scale, to demonstrate the exponential growth.

In Figure 5 we show how many iterations are needed in average according to
the number of fixed points. There is only one line because all four versions of the
algorithm perform exactly the same number of iterations. In fact, when we take
a look on the raw performance data, we observe, that on all examples we have
tested the algorithm on, the number of iterations is the same in all versions. It does
not follow from this that the different versions of the algorithm will always take the
same number of iterations. There is sufficient nondeterminism in the algorithms (for
example, in the modified version, in the choice of constraint N , or supremum term
bj) that it is very plausible that the number of iterations does not always agree in
general. However, we have not found a single example for which a difference occurs
in practice. In Figure 5 we have an even further confirmation of that fact, when
we have three lines, that represent averages, medians and maximums of numbers of
iterations and they are the same for all versions of the algorithm. However we spot
a peculiar behaviour, when we go from 8 fixed points to 9 and the average number
of iterations drops. We believe this is due to the very small number of examples and
is consequently noise in the trend. To have more reliable data, we would need to
process many more examples, as previously discussed in Section 6.4. Still, overall we
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Figure 5: Graph of averages of number of loop iterations.

Figure 6: Graph of averages, medians and maximums of number of loop iterations.

can see a distinct exponentional growth of the number of iterations in all cases. Such
exponential behaviour is presumably unavoidable (due to the problem subsuming
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the solution of simple stochastic games [4], for which the best known algorithm is
exponential).

Figure 7: Graph of averages of constraint set sizes.

We now take a look at the average size of constraint sets in Figure 7. The
number of inequalities inside the largest constraint set significantly differs between
the initial version of the algorithm (evaluate) and the modified version. For the
first, we see an exponential growth, but for the second, the growth appears to be
a slower exponential growth (with smaller basis), which is expected, since we have
eliminated adding quite a few constraints. Again we attribute the down trend at 9
fixed points to a small number of examples. The slowest growth and consequently the
smallest number of constraints is obtained when we use optimization via quantifier
elimination. We observe, that in both versions, that use quantifier elimination,
we get exactly the same results, as seen in Figure 8. This reinforces our belief,
that the procedure via quantifier elimination really gives us the smallest number of
constraints possible as stated in Question 4.3. We can be sure, that the averages
give us a good insight on the behaviour, since we can compare the versions of the
algorithms with medians and maximums in Figure 9 and get roughly the same
results. In order to get the feeling of just how much the constraint sets get smaller
if optimised via quantifier elimination, we take a look at the largest constraint set
for 9 fixed points. With the original algorithm, the largest constraint set contains
409385 constraints, with the modified version it contains 2208 constraints and after
applying quantifier elimination it contains only 62 inequalities.

When we compare, how much time is spent on computation per example, we
are slightly surprised by the results. In Figure 10 we see an average time spent on
the examples for all four versions of the algorithm. It is interesting how quanti-
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Figure 8: Graph of averages of constraint set sizes for versions with quantifier elim-
ination.

Figure 9: Graph of maximums, averages and medians of constraint set sizes.
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fier elimination anihilates any progress in saving time on computations by making
constraint sets smaller. Since with quantifier elimination optimisation there are not
nearly as many constraints in the sets as in the initial version of the algorithm, we
would expect the procedure to be much faster as the iterations through the sets are
faster. But it seems that quantifier elimination slows the process down substantially
and there seems to be some sort of trade off between space complexity and time
complexity in this case. We can again observe an exponential growth in the time
spent on computations for all versions apart from the modified one without qun-
atifier elimination, which seems to be the fastest and represents the best trade off
between time and space requirements. We can observe the same in the graph that
shows averages and maximums in Figure 11 and in the graph that illustrates the
medians in Figure 12.

Figure 10: Graph of averages of time spent on evaluations of terms.

Overall, we can conclude, that our modification of the algorithm is in fact useful,
but if we have space issues, we still may have to use quantifier elimination optim-
isation of the constraint sets, which has a serious negative effect on the time spent
per computation.
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Figure 11: Graph of maximums and averages of time spent on evaluations of terms.

Figure 12: Graph of medians of time spent on evaluations of terms.
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8 Conclusion and further work

In terms of both time and space complexity the modified algorithm is a serious
improvement on the original one from [13]. This problem subsumes alhorithmic
problems such as the solution of “simple stochastic games” [4], for which the best
known algorithms are all exponential (although there is no proven hardness result).
It would be interesting to obtain more experimental evidence comparing our best
algorithm (the modified one) with known algorithms for simple stochastic games,
and for quantified model checking. We could still aim to enhance the performance,
perhaps starting with a more efficient implementation of the optimisation of the
constraint sets.

There are still two open questions to be tackled. A positive answer to Question
4.3 on the minimality of the constraint set obtained via quantifier elimination optim-
ization, would give us grounds on which we may compare constraint sets and would
also yield an interesting fact about the facets of “generalised” polytopes (when we
have the strict inequalities together with the non-strict ones) as a consequence. It
is very plausible that the answer to this question exists in the literature. However,
we have not been able to find it.

We believe that the answer to Question 5.4 on whether or not µ-terms sub-
sume all monotone (rational) piecewise linear functions is positive. Such an answer
would definitely give µ-terms an even grater meaning and consequently make our
implementations even more useful.

Besides the two questions, that were also mentioned in the previous chapters, we
offer some additional ideas for futher advancement. On the more theoretical side, we
could investigate the µ-terms determine some sort of “distributivity” laws for fixed
point operators over the rest of operators, i.e. we could examine for which of the
operators ◦ ∈ {t,u,⊕,�} are equalities of the form

µx.(t1 ◦ t2) = (µx.t1) ◦ (µx.t2),

where t1 and t2 are terms, that involve variable x, ture. The idea is to use such
distributivity laws to pre-process terms, allowing for potential more efficient evalu-
ation.

If however we focus on the implementation, one could implement full quantifier
elimination on arbitrary formulas from the first-order theory of linear arithmetic
and use it to compute evaluation of µ-term. This would be done via converting
the µ-term to a fomula and performing quantifier elimination in order to compare
this approach to the iterative algorithm described in Section 4. It is to be expected
that using a general quantifier elimination algorithm in this way will result to a less
efficient computation, because quantifier elimination is known to be a very costly
procedure.

Another issue is obtaining some theoretical bounds on the time/space efficiency
of the iterative algorithm. It seems very hard to analyse the time and space re-
quirements with any degree of precision. It would be good to have at least heuristic
mathematical explanations for the observed exponential time behaviour. We could
also investigate theoretical bounds on what complexity class the problem of com-
puting the value of a µ-term lies in. It subsumes the problem of solving simple
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stochastic games [4], which is known to be in NP ∩ coNP , but it is not known
whether it lies in P . Is the problem of computing the value of a µ-term also in
NP ∩ coNP?

We could also investigate in developing versions of the iterative algorithm that
efficiently solve systems of simultaneous fixed-point equation with the same fixed
point (least or greatest), see [1] for further information on how to achieve that. This
constrasts with the current algorithm that works one variable at a time. Once this
is done, it will be possible to apply the algorithm to model-checking problems, and
to compare it to standard specialist algorithms for such problems.

Perhaps Microsoft’s Z3 (see https://github.com/Z3Prover/z3) could be used
for solving those systems of equations. But it is highly nontrivial given that we are
working with simultaneous equations involving complicated piecewise linear func-
tions. It would be easier to essentially modify the iterative algorithm so that the
linear solution finding part which solves xn+1 = e(x1, ..., xn+1) (where e is a linear ex-
pression), does the relevant linear algebra to solve several variables simultaneously.
One would then need to adjust all the “find next approximation” subprocedure ap-
propriately.
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9 Razširjeni povzetek v slovenščini

V tem razdelku podajamo daljši povzetek v slovenščini. Osredotočili se bomo na
definicije pojmov, zanimive trditve in ključne izreke, dokaze pa bomo spuščali, saj
so podrobno podani v angleškem jeziku. Prevodi angleških pojmov so bolj ali manj
dobesedni in se morda ne skladajo s konvencijo.

9.1 Uvod

V tem projektu se ukvarjamo z monotonimi odsekovno linearnimi funkcijami in
različnimi algoritmi za računanje njihovih najmanjših in največjih fiksnih točk. S
fiksnimi točkami so se matematiki ukvarjali v različnih kontekstih, od Banachovega
skrčitvenega načela [9], kjer gledamo konvergenco, do Brouwerjevega izreka o fiksni
točki [12], ki se osredotoča na topološki vidik in preučuje funkcije na kroglah. Mi si
bomo pogledali fiksne točke v smislu izreka Knaster-Tarski [1].

Problem računanja fiksnih točk montonih odsekovno linearnih funkcij izvira iz
specifikacije in verifikacije sistemov, ki se vedejo nedeterministično in verjetnostno.
Ker so funkcije, ki pridejo iz teh sistemov, nezvezne, se ne moremo omejiti le na
zvezne odsekovno linearne funkcije, ampak upoštevamo tudi nezvezne.

Glavna literatura pri tem projektu je članek, ki sta ga napisala M. Mio in A.
Simpson [13]. V njem najdemo prvotno različico algoritma za računanje fiksnih točk
monotonih odsekovno linearnih funkcij. Mi pa smo vpeljali nekaj posodobitev, da
bi izboljšali njegovo učinkovitost. Vse te spremembe, kot tudi dokaz, da so pravilne
in da se posodobljen algoritem vedno ustavi, so originalno delo. Tudi optimizacija
preko eliminacije kvantifikatorjev je nova in torej originalen prispevek.

9.2 Mreže, negibne točke in izrek Knaster-Tarski

V tem razdelku smo si pomagali predvsem s knjigo [1]. Uporabljali bomo notacijo
(E,≤) za urejeno množico, kjer je ≤ delna urejenost. Ko bo relacija očitna iz
konteksta, bomo oznako zanjo spuščali. Spomnimo se, da je element e ∈ E zgornja
meja za X, kjer je X ⊆ E, če za vsak x ∈ X velja x ≤ e. Podobno je e spodnja
meja, če velja e ≤ x za vse x ∈ X. Element e ∈ E je najmanjša zgornja meja
množice X ⊆ E, če je najmanjši med vsemi zgornjimi mejami, tj. če sta izpolnjena
pogoja

• ∀x ∈ X, x ≤ e,

• če velja ∀x ∈ X, x ≤ f za nek f ∈ E, potem je e ≤ f .

Podobno velja za največjo spodnjo mejo. Najmanjša zgornja meja je enolična in jo
označimo z

∨
X (oziroma

∧
X za največjo spodnjo mejo).

Definicija 9.1. Naj bo (E,≤) takšna urejena množica, da ima za vsaka dva ele-
menta x, y ∈ E, množica {x, y} najmanjšo zgornjo mejo x ∨ y in največjo spodnjo
mejo x∧y. Potem je E mreža. Če ima vsaka podmnožica X ⊆ E najmanjšo zgornjo
mejo

∨
X in največjo spodnjo mejo

∧
X, potem pravimo, da je E polna mreža.

V posebnem ima polna mreža najmanši element
∨
∅ in največji element

∧
∅.
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Primer 9.2. Kanonični primer polne mreže je potenčna množica z relacijo inkluzije.
Naj bo S poljubna množica in P(S) njena potenčna množica. Tedaj je (P(S),⊆)
delna urejenost in za poljubno podmnožico X ⊆ P(S) imamo

∨
X =

⋃
X in

∧
X =⋂

X.
Opazimo, da sta pojma spodnje meje in zgornje meje zelo simetrična. Velja, da

ima poljubna lastnost, ki velja za najmanjše zgornje meje, svojo dualno formulacijo
za največjo spodnjo mejo in torej nam lastnosti ni potrebno zopet dokazati. Temu
pravimo princip simetrije.

Sedaj pa lahko podamo tudi formalno definicijo monotonosti funkcije med delno
urejenima množicama.
Definicija 9.3. Naj bosta (E,≤E) in (F,≤F ) urejeni množici. Funkcija f : E → F
je monotona, če

∀x, y ∈ E, x ≤E y =⇒ f(x) ≤F f(y).

Definicija se sklada z definicijo monotonosti, ki jo že poznamo na funkcijah v
R, vendar pa smo navajeni razlikovati med naraščajočimi in padajočimi funkcijami.
Za nas po zgornji definiciji 9.3 monotonost pomeni zgolj naraščanje in bomo termin
monotonost tudi uporabljali v tem ožjem smislu.

Osredotočimo se na funkcije iz urejene množice E nazaj vase in definirajmo fiksno
točko.
Definicija 9.4. Naj bo E poljubna množica in f : E → E a funkcija. Fiksna
(negibna) točka funkcije f je takšen element x ∈ E, da velja f(x) = x. Množico
vseh fiksnih točk funkcije f označimo s Fix(f).

Naj opozorimo, da sta za nas izraza fiksna točka in negibna točka sopomenki in
ju bomo uporabljali izmenjujoče.

Če imamo funkcijo f : R → R, njena fiksna točka leži na preseku grafa funkcije
f in diagonale y = x.
Primer 9.5. Oglejmo si funkcijo f(x) = x3−3x+1 in njen graf na sliki 13. Opazimo,

y = x³ - 3x +1

y = x

-2 -1 1 2

-5

5

10

Slika 13: Fiksne točke funkcije f(x) = x3 − 3x+ 1.

da ima f tri fiksne točke, torej |Fix(f)| = 3. Čeprav so fiksne točke le x-koordinate,
so zavoljo jasnosti označeni preseki z diagonalo.

Ko je E urejena množica, je Fix(f) urejena podmnožica in je v splošnem lahko
prazna. Vendar pa ko je E polna mreža, fiksne točke gotovo obstajajo. Nas naj-
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bolj zanimajo najmanjše in največje fiksne točke monotonih funkcij. Njihov obstoj
zagotavlja izrek Knaster-Tarski.
Izrek 9.6 (Knaster-Tarski). Naj bo (E,≤) polna mreža in f : E → E monotona
funkcija. Tedaj

∧
Fix(f) in

∨
Fix(f) pripadata Fix(f).

Preden gremo naprej, spoznajmo notacijo za najmanjše in največje negibne točke.
Idejo si sposodimo pri predikatni logiki, kjer kvantifikatorja ∃ in ∀ vežeta spremen-
ljivke. Tam uporabljamo notacijo ∃x.expr[x], da povemo, da kvantifikator ∃ veže
spremenljivko x v nekem izrazu expr, ki lahko vsebuje x. V izogib teževam z imeni
spremenljivk, lahko vezane spremenljivke tako preimenujemo:

(∃x.expr[x])→ (∃y.expr[y]).

Ko bi radi zapisali fiksne točke funkcije f , uporabimo naslednjo notacijo:

• najmanjšo fiksno točko zapišemo kot µx.f(x),

• največjo fiksno točko zapišemo kot νx.f(x).

Primera sta si med seboj dualna preko principa simetrije. Zopet je spremenljivka x
vezana preko ekstremalne fiksne točke in jo lahko preimenujemo na enak način kot
prej.

Imamo pa lahko tudi funkcije več spremenljivk. Naj bosta E in F polni mreži in
f : E×F → E monotona funkcija v obeh argumentih. Za poljuben y ∈ F definiramo
fy : E → E z fy(x) = f(x, y). Z µx.f(x, y) označimo funkcijo iz F v E definirano s
predpisom µx.f(x, y) = µx.fy(x) (podobno νx.f(x, y)). Velja naslednja trditev.
Trditev 9.7. Naj bosta E in F polni mreži. Če je f : E×F → E monotona v obeh
argumentih, potem sta µx.f(x, y) in νx.f(x, y) monotoni funkciji iz F v E.

To dejstvo je pomembno, ko želimo narediti več zaporednih fiksnih točk, npr.
µx.νy.f(x, y). Tako nam izrek Knaster-Tarski 9.6 zagotavlja obstoj tudi fiksnih
točk funkcije νy.f(x, y).

Naslednja lema je tako zvana “zlata” lema µ-računa, saj se pogosto uporabi v
dokazih. Omogoča nam, da zaporedne fiksne točke istega tipa (gnezdene fiksne
točke) zamenjamo s preprostejšim izrazom.
Lema 9.8 (Zlata lema µ-računa). Naj bo E polna mreža in f : E×E → E monotona
funkcija v obeh argumentih. Tedaj velja

µx.µy.f(x, y) = µx.f(x, x) = µy.µx.f(x, y)

in
νx.νy.f(x, y) = νx.f(x, x) = νy.νx.f(x, y).

9.3 Odsekovno linearne funkcije

Ker se ukvarjamo z odsekovno linearnimi funkcijami, si oglejmo njihovo formalno
definicijo. Beseda “odsekovno” že nakazuje, da bomo domeno razrezali na kose in
na vsakega dali linearni predpis. Funkcija ni nujno zvezna, kot vidiomo na enodi-
menzionalnem primeru na sliki 14. Osredotočamo se na domeno [0, 1]n. Da bi lahko
razložili kako odsekovno linearne funkcije podamo, si poglejmo naslednje definicije.
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Slika 14: Nezvezna monotona odsekovno linearna funkcija na [0, 1]. Odprt interval
je nakazan s puščico, saj ima funkcija enolično vrednost za vsak element domene.

Definicija 9.9. Linearni izraz v spremenljivkah x1, x2, . . . , xn je izraz oblike

q0 + q1x1 + q2x2 + . . .+ qnxn,

kjer so q0, . . . , qn realna števila. Pravimo, da je linearni izraz racionalen če so
q0, . . . , qn racionalna števila.

Ker večinoma delamo z racionalnimi linearnimi izrazi, bomo besedo “racionalni”
opuščali. Če pišemo e(x1, . . . , xn) to označuje linearni izraz v naslednjih spremen-
ljivkah: x1, . . . , xn. Linearni izrazi so zaprti za substitucijo.
Definicija 9.10. Pogojnostni linearni izraz je par C ` e, kjer je e linearni izraz in
C končna množica strogih ali nestrogih neenakosti med linearnimi izrazi, tj. vsak
element v C je ene od oblik

e1 ≤ e2, e1 < e2. (9.1)

Množici C v pogojnostnem linearnem izrazu pravimo tudi množica omejitev ali
množica neenakosti.

Oznaka C(~r) pomeni konjunkcijo neenakosti, kjer zamenjamo spremenljivke v
C z realnimi vrednostmi r1, . . . , rn. Pogojnostni linearni izraz C ` e predstavlja
en kos odsekovno linearne funkcije. Domena kosa je množica vseh vektorjev ~r, ki
zadoščajo C(~r). Linearni izraz e podaja linearno funkcijo nad to domeno. Tako
definirane domene so vedno konveksne, kar vidimo v dokazu trditve 3.3. Sedaj smo
opremljeni, da podamo formalno definicijo odsekovno linearne funkcije
Definicija 9.11. Funkcija f : [0, 1]n → [0, 1] je odsekovno linearna, če obstaja
končna množica F pogojnostnih linearnih izrazov v spremenljivkah x1 . . . , xn, da
sta izpolnjena naslednja pogoja:

1. Za vse ~r ∈ [0, 1]n, obstaja pogojnostni linearni izraz (C ` e) ∈ F , da velja
C(~r) in
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2. za vse ~r ∈ [0, 1]n in vsak pogojnostni linearni izraz (C ` e) ∈ F velja, da če
C(~r) velja, potem je f(~r) = e(~r).

Tedaj pravimo, da F predstavlja f .
Zavedajmo se, da dva pogojnostna linearna izraza (C1 ` e1) ∈ F in (C2 ` e2) ∈ F

nimata nujno disjunktnih domen, a se morata e1 in e2 strinjati na morebitnem
prekrivanju.
Primer 9.12. Zopet si oglejmo enodimezionalen primer na sliki 14. Funkcija je
podana preko sledečih pogojnostnih linearnih izrazov:

0 ≤ x <
1

3
` 1

2
x+

1

3
1

3
≤ x <

2

3
` 1

4
x+

7

12
2

3
≤ x ≤ 1 ` 5

6
.

Funkcija je nezvezna in ima tri kose.
V razdelku 3.2 smo dokazali, da lahko vsako monotono odsekovno linearno funk-

cijo zapišemo kot formulo v predikatni teoriji linearne aritmetike. Vendar pa sta
oba pristopa, tako s formulo kot s pogonjonstnimi linearnimi izrazi, zelo prostorsko
in časovno zahtevna. Zato je praktično predstaviti monotono odsekovno linearno
funkcijo preko lokalnega algoritma, ki, če dobi neko točko v domeni, vrne primeren
pogojnostni linearni izraz.
Definicija 9.13. Lokalni algoritem za odsekovno linearno funkcijo f : [0, 1]n → [0, 1]
je algoritem, ki za r1, . . . rn ∈ [0, 1] vrne pogojnostni linearni izraz C ` e, za katerega
velja

1. C(r1, . . . , rn) drži in

2. če za poljubne s1, . . . sn ∈ [0, 1] velja C(s1, . . . , sn), potem je f(s1, . . . sn) =
e(s1, . . . , sn).

Še več, le končno mnogo različnih C ` e lahko algoritem vrne.
Dobro je opaziti, da lahko eksplicitno reprezentacijo f zlahka spremenimo v

lokalni algoritem. Vendar pa obstajajo primeri, kjer je reprezentacija preko lokalnega
algoritma bistveno bolj učinkovita (glej razdelek 5 o µ-termih).

9.4 Iterativni algoritem na primeru

Sedaj si oglejmo iterativni algoritem za računanje fiksnih točk monotonih odsekovno
linearnih funkcij. Naj bo f : [0, 1]n+1 → [0, 1] odsekovno linearna funkcija, ki je
monotona v zadnji spremenljivki. Ker sta po principu simetrije pojma najmanjše in
največje fiksne točke dualna, se bomo osredotočili zgolj na najmanjše fiksne točke.

En od načinov za izračun fiksne točke bi bil, da pretvorimo funkcijo

µxn+1.f(x1, . . . , xn, xn+1)

v formulo iz predikatne teorije lineatne aritmetike uporabimo eliminacijo kvantifika-
torjev [6]. Vendar pa je ta princip znan kot težek problem in v tem primeru precej
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upočasni postopek izračuna. Zato predstavljamo alternativo, kjer namesto, da bi
izračunali celotno družino pogojnostnih linearnih izrazov, algoritem deluje lokalno
in priskrbi en sam pogojnostni linearni izraz za dani vektor ~r. Ta lokalnost nam
omogoča, da z odsekovno linearnimi funkcijami delamo preko lokalnih algoritmov,
kot v definiciji 9.13.

Ker je algoritem precej tehničen in je v celoti opisan v razdelku 4, kjer je tudi
dokazana pravilnost njegove različice, bomo na tem mestu le ilustrirali idejo algo-
ritma na enodimenzionalnem primeru in komentirali razlike med originalno verzijo
iz [13] in modificirano verzijo, ki je podana v razdelku 4.2.1.

Sledimo korakom modificirane različice algoritma iz razdelka 4.2.1. Fiksne točke
računamo z iteracijo čez njihove približke. Začnemo z 0 za najmanjšo fiksno točko
in z 1 za največjo fiksno točko. Naj bo funkcija f : [0, 1] → [0, 1] iz primera 9.12
podana z naslednjimi pogojnostnimi linearnimi izrazi:

0 ≤ x <
1

3
` 1

2
x+

1

3
1

3
≤ x <

2

3
` 1

4
x+

7

12
2

3
≤ x ≤ 1 ` 5

6
.

Graf funkcije f in diagonale si lahko ogledamo na sliki 15.

y = f(x)

y = x
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Slika 15: Graf funkcije f in diagonale.

Očitno je f monotona in ima enolično fiksno točko v 5
6
.

Algoritem računa fiksno točko z iterativnim popravkom aproksimacije d. Prič-
nemo z d = 0 in najdemo linearen kos za x = 0, ki je podan s pogojnostnim linearnim
izrazom 0 ≤ x < 1

3
` 1

2
x+ 1

3
. Enolična rešitev enačbe x = 1

2
x+ 1

3
je x = 2

3
, kar sega

izven domene tega kosa. Zato zamenjamo d z novim približkom, ki ga dobimo iz
1
2
x+ 1

3
, ko izračunamo v zgornji meji domene x = 1

3
. Torej je naslednja aproksimacija

fiksne točke enaka d = 1
2
.

Sedaj pogledamo, kateremu kosu pripada x = 1
2
, kar je 1

3
≤ x < 2

3
` 1

4
x + 7

12
.

Rešitev enačbe x = 1
4
x + 7

12
je x = 7

9
, kar zopet pogleda ven iz domene trenutnega
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kosa. Torej najdemo naslednji približek z izračunom 1
4
x+ 7

12
v točki x = 2

3
in dobimo

d = 3
4
.

Nazadnje si ogledamo še zadnji kos domene za x = 3
4
, ki je podan z 2

3
≤ x ≤ 1 ` 5

6
.

Dobimo kandidata za fiksno točko x = 5
6
, ki pa tokrat je v domeni trenutnega

linearnega kosa in tako x = 5
6
proglasimo za najmanjšo fiksno točko funkcije f .

Čeprav smo na tem primeru pogledali vse kose domene, v splošnem temu ni tako.
Splošen algoritem za iskanje fiksnih točk monotonih odsekovno linearnih funkcij z n
argumenti je bistveno bolj kompliciran, saj iščemo fiksne točke linearnih izrazov in
ne le števil.

9.5 Primerjava različic algoritma

Modificirana verzija algoritma se od originalne verzije iz [13] razlikuje v tem, da bolj
spretno posodablja množice omejitev v pogojnostnih linearnih izrazih in jih tako
ohranja manjše. Izkaže se, da prevelike množice neenakosti predstavljajo problem,
zato smo razmišljali o tem, kako bi jih še bolj zmanjšali.

Na množice omejitev iz pogojnostnih linearnih izrazov lahko gledamo kot na
predstavitev “posplošenih” konveksnih politopov [7], saj niso nujno zaprti zaradi
strogih neenakosti. Če bi množice omejitev vsebovale le stroge neenakosti, bi imeli
polno-dimenzionalne zaprte konveksne politope, za katere vemo, da imajo najmanjšo
reprezentacijo preko lic (za vsako lice potrebujemo natanko eno neenakost) [7]. Dej-
stvo, da imamo opravka s posplošitvami politopov, nam daje upanje, da je veliko
neenakosti v množici omejitev nepotrebnih.

Tega problema se lotimo preko eliminacije kvantifikatorjev [14]. Najprej uvedemo
terminologijo, ki jo potrebujemo, da opišemo želene lastnosti.
Definicija 9.14. Naj bo C(x1, . . . , xn) množica linearnih neenakosti iz pogojno-
stnega linearnega izraza.

• Pravimo, da je neenakost c ∈ C nepotrebna za množico omejitev C, če za vse
~s ∈ Rn velja, da

(C \ c)(~s) =⇒ c(~s).

• Množica linearnih neenakosti E(x1, . . . , xn) je ekvivalentna množici C, če za
vse ~s ∈ Rn velja C(~s), če in samo če velja E(~s).

Za množico omejitev C(x1, . . . , xn) zgradimo njej ekvivalentno množico omejitev
E(x1, . . . , xn) tako, da neenakosti dodajamo eno-po-eno in preverjamo, ali so nepo-
trebne. Denimo, da imamo na neki točki množico E = {e1, e2, . . . , eN} in bi radi
dodali novo neenakost c ∈ C v E. Ta neenakost je nepotrebna, če dodajanje njene
negacije pomeni, da dobimo prazno domeno, tj. če je formula

∃x1.∃x2. . . .∃xn.

( ∧
1≤i≤N

ei(x1, . . . , xn)

)
∧ (¬c(x1, . . . , xn))

neresnična.
Ker je to zaprta formula v teoriji linearne aritmetike, lahko uporabimo eliminacijo

kvantifikatorjev za izračun njene logične vrednosti. Če pa je c potrebna neenakost
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in jo dodamo k obstoječi (minimalni) množici E, se lahko zgodi, da postanejo katere
od neenakosti e ∈ E nepotrebne, saj lahko sledijo iz konjunkcije neenakosti c in še
nekaterih drugih neenakosti iz E. Da bi ohranili minimalnost množice E, moramo
za vse neenakosti e ∈ E preveriti, ali so nepotrebne za množico E ∪ {c}.

Ta postopek je podrobno opisan v razdelku 4.3. Tam je tudi dokazan nalsednji
izrek, ki zagotavlja, da nam postopek res vrne v nekem smislu optimalno množico
neenakosti.
Izrek 9.15. Naj bo C(x1, . . . , xn) množica omejitev. Zgornji postopek vrne podmno-
žico neenakosti E(x1, . . . , xn) ⊆ C(x1, . . . , xn) z naslednjima lastnostma:

1. Množici omejitev C in E sta ekvivalentni, tj. za vsak ~s ∈ Rn, C(~s) drži če in
samo če velja E(~s).

2. Vsaka neenakots c ∈ E je potrebna v množici E, tj. obstaja vektor ~s ∈ Rn,da
(E \ c)(~s) drži, vendar c(~s) ne drži. Ekvivalentno to pomeni, da v množici E
ni nepotrebnih neenakosti.

Torej smo si zagotovili minimalnost množice E v smislu, da v njej ni nepotrebnih
neenakosti. Takšnih množic E lahko iz neke množice C dobimo več in prav vse
ustrezajo kriterijem. Vprašanje pa ostaja, ali so vse enake kardinalnosti?
Vprašanje 9.16. Naj bo C(x1, . . . , xn) množica omejitev. Ali zgornji algoritem
vedno vrne minimalno (po kardinalnosti) ekvivalentno podmnožico omejitev

E(x1, . . . , xn) ⊆ C(x1, . . . , xn),

tj. če obstaja še ena podmnožica F ⊆ C, ki je ekvivalentna množici C, ali potem
sledi |E| ≤ |F |?

Dopuščamo možnost, da je to vprašanje že kje rešeno in žal odgovora le mi nismo
našli.

Tako se torej spopadamo s štirimi različnimi verzijami algoritma: originalna
verzija iz članka [13], modificirana verzija iz razdelka 4.2.1 ter obe navedeni ver-
ziji opremljeni z optimizacijo preko eliminacije kvantifikatorjev. Vse te verzije smo
eksperimentalno testirali z implementacijo.

9.6 Implementacija in glavni rezultati

Celotna implementacija algoritmov v pythonu 3 in rezultati testiranj so origina-
len prispevek. Programska koda je v polnosti dostopna na repozitoriju https:
//bitbucket.org/AnjaPetkovic/evaulating-mu-terms. Proporočamo, da pre-
učite datoteko README.md preden zaženete kodo, saj se tam nahajajo kratka
navodila in specifikacije.

Implementacija ima tri glavne komponente: generiranje primerov, programska
koda za izvajanje algoritmov (implementacija je narejena preko µ-termov, glej raz-
delek 5) in testiranje z analizo rezultatov. Pravilnost programov za izvajanje al-
goritmov smo med drugim preverili tako, da smo zaporedne pojavitve fiksne točke
istega tipa (npr. samo µ in ne ν) nadomestili v skladu z zlato lemo µ-računa 9.8 in
preverili, da poenostavljena funkcija in prvotna funkcija vrneta isti rezultat.
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Najbolj zahteven del je seveda, ko gnezdimo fiksne točke eno za drugo, npr.
µx.νy.µz.f(x, y, z). Zanima nas obnašanje algoritmov v odvisnosti od števila gnez-
denih fiksnih točk, ki se zaradi počasnosti algoritmov razpenja le med 0 in 9. Za
vsako število fiksnih točk, smo vse štiri algoritme smo pognali na 10 naključno ge-
neriranih primerih in pri tem merili naslednje komponente:

• število iteracij (ponovitev zanke while), ko iteriramo preko približkov za fiksno
točko,

• dejanski čas, ki ga računalnik porabi za izračun (v sekundah),

• velikost največje množice omejitev, ki jo srečamo med izračunom.

Prvi dve lastnosti merita, kako zelo počasen je proces, tretja lastnost pa meri pro-
storske zahteve. Pričakujemo, da sta ta dva pristopa korelirana, saj velike množice
omejitev vzamejo veliko časa za procesiranje.

Rezultate smo prikazali na grafih v logaritemski skali, da demonstrirajo ekspo-
nentno rast.

Na sliki 16 vidimo, koliko iteracij program povprečno potrebuje za izračun. Ob-
stoj le ene črte nam pove, da vse štiri verzije algoritma potrebujejo natanko isto
število iteracij. To še ne pomeni, da bodo algoritmi vedno delovali s povsem enakim
številom iteracij. V algoritmih je dovolj nedeterminizma, da je povsem verjetno, da
ni vedno tako. Le nam ni uspelo najti primera, kjer bi se to zgodilo.

Slika 16: Graf povprečja števila iteracij.

Graf na sliki 17 prikazuje povprečen čas, ki ga posamezna verzija algoritma po-
rabi za izračun. Nad rezultatom smo nekoliko presenečeni, saj pričakujemo, da
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bodo algoritmi, ki izvajajo eliminacijo kvantifikatorjev delovali hitreje, saj pregle-
dujejo manjše množice. Vseeno pa je redukcija s pomočjo zahtevnega postopka
eliminacije kvantifikatorjev tako draga, da nas stane ves privarčevani čas pri pregle-
dovanju majnhih množic omejitev. Tako je modificirana verzija algoritma dejansko
najhitrejša.

Slika 17: Graf povprečnega časa, ki ga posamezen algoritem porabi za izračun.

Za konec pa si oglejmo še graf na sliki 18, ki prikazuje velikosti množic omejitev.
Opazimo, da obe verziji algoritma, ki uporabljata eliminacijo kvantifikatorjev, data
identične rezultate, kar pomeni, da so množice omejitev enako velike, kar spodbuja
naše sume, da ima vprašanje 9.16 pritrdilni odgovor. Po pričakovanjih ima največje
množice omejitev originalni algoritem iz [13], nato mu sledi modificirana verzija in
na koncu še optimizacija preko eliminacije kvantifikatorjev. Za boljši občutek o de-
janskih velikostih (in posledično ogromnih razlikah med učinkovitostjo algoritmov),
lahko preverimo, da je med testiranjem za 9 fiksnih točk največja množica omejitev
za originalen algoritem vsebovala 409385 neenakosti, za modificiran algoritem 2208
neenakosti in za algoritem z optimizacijo preko eliminacije kvantifikatorjev le 62
neenakosti.
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Slika 18: Graf povprečne največje velikosti množice omejitev.
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