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Abstract

In this thesis we present a meta-analysis of a wide class of general type theories,
focusing on three aspects: transformations of type theories, elaboration of type the-
ories, and a general equality checking algorithm.

Type theories provide the mathematical foundations of many proof assistants. We
build towards understanding of how they interact by studying their meta-theoretic
properties and checking them against an implementation of the flexible proof assis-
tant Andromeda 2, which supports user-specified type theories.

Our meta-analysis is built on the definition of finitary type theories. We define syn-
tactic transformations of type theories and prove they form a relative monad for the
syntax. To account for the derivability structure, we upgrade the definition to type-
theoretic transformations that cover some familiar examples, like propositions as
types translation and the definitional extension. Once these definitions are accom-
plished we prove some meta-theorems. The usefulness of type-theoretic transfor-
mations is unveiled in the definition of an elaboration and we prove an elaboration
theorem, saying that every finitary type theory has an elaboration.

To tackle the implementational side, we design a general and user-extensible equality
checking algorithm, applicable to a finitary type theories. The algorithm is composed
of a type-directed phase for applying extensionality rules and a normalization phase
based on computation rules. Both kinds of rules are defined using the type-theoretic
concept of object-invertible rules. We specify sufficient syntactic criteria for recogniz-
ing such rules and a simple pattern-matching algorithm for applying them. A third
component of the algorithm is a suitable notion of principal arguments, which deter-
mines a notion of normal form. By varying these, we obtain known notions, such as
weak head-normal and strong normal forms. We prove that our algorithm is sound.
We implemented it in the Andromeda 2 proof assistant.
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Izvleček

V doktorski disretaciji predstavimometa-analizo širokega razreda splošnih teorij tipov.
Osredotočimo se na tri vidike: transformacije teorij tipov, dopolnitev teorij tipov in
splošen algoritem za preverjanje enakosti.

Teorije tipov zagotavljajo matematično osnovo za mnoge dokazovalne pomočnike.
Da bi lažje razumeli interakcije med teorijami, študiramo njihove meta-teoretične
lastnosti in jih preverjamo z implementacijo fleksibilnega dokazovalnega pomočnika
Andromeda 2, ki omogoča, da uporabnik sam poda teorijo tipov.

Naša meta-analiza je zgrajena na definiciji končnih teorij tipov. Definiramo sintak-
tične transformacije teorij tipov in dokažemo, da tvorijo relativnomonado za sintakso.
Da bi vključili strukturo izpeljivosti nadgradimo definicijo v transformacije teorij tipov,
ki pokrije nekatere znane primere, kot sta Curry-Howardova korespondenca in razširitev
z definicijo. Nato dokažemo nekaj meta-izrekov o transformacijah. Uporabnost trans-
formacij teorij tipov se pokaže v definiciji dopolnitve. Dokažemo izrek o dopolnitvi, ki
pravi, da ima vsaka končna teorija tipov dopolnitev.

Na strani implementacije oblikujemo splošen algoritem za preverjanje enakosti, ki
ga lahko uporabimo na končnih teorijah tipov. Algoritem je sestavljen iz faze ek-
stenzionalnosti, kjer uporabljamo pravila ekstenzionalnosti, in faze normalizacije, ki
temelji na pravilih za izračun. Obe vrsti pravil sta definirani s pomočjo pogoja objek-
tne obrnljivosti. Podamo tudi zadosten sintaktični kriterij za prepoznavanje teh pravil
in algoritem s preprostimi vzorci, ki pravila uporablja. Tretja komponenta algoritma
je primeren pojem glavnih argumentov, ki določa normalno obliko. S spreminjan-
jem glavnih argumentov dobimo znane pojme, kot sta šibka in močna normalna ob-
lika. Dokažemo, da algoritem zadošča izreku skladnosti. Algoritem je implementiran
v dokazovalnem pomočniku Andromeda 2.

2020 Mathematics Subject Classification: 03B38, 03B70, 18C10, 68V15, 68V20, 03F50,
03F03, 03F07

Ključne besede: odvisna teorija tipov, algebrajska teorija, dokazovalni pomočnik, dopol-
nitev teorij tipov, preverjanje enakosti.
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1: Just like this one :)

A quick guide to reading this
thesis

In this day and age a document of this size is usually read on an
electronic media. Thanks to Théo Winterhalter, who inspired me to
use the kaobook class to generate this kind of document, the thesis
is adapted for a convenient use electronically, without compromising
the experience on the paper version.

The document contains a wide margin to accommodate accompany-
ing comments, citations, side notes etc. The reader may also use the
margin to scribble their own notes should they wish – this feature
is actually even more enjoyable on paper. The references to defini-
tions (like Definition 9.1.2), theorems (like Theorem 10.2.1), lemmas
(like Lemma 13.2.10), propositions (like Proposition 5.1.2), examples
(like Example 9.3.1) and even type-theoretic rules (like TT-TM-SYM) are
clickable so one can quickly travel to the relevant part of the docu-
ment.

Citations like [24]

[24]: Bauer et al. (2021), An extensible
equality checking algorithm for depen-
dent type theoriesappear in the margin (also clickable) in a short ver-

sion listing just the first author, as well as in the Bibliography where
the full citations can be found. Instead of the footnotes we use side
notes1 so one does not have to scroll (or look) at the bottom of the
page.

The margin will also contain margin notes, comments accompanying
the main text. These notes are not placed automatically, but are ad-
justed so they are close to the relevant paragraph.

This is supposedly relevant to what is on
the left.

The margin also contains reminders.
Reminder: of a concept

Sometimes we will have a reminder
in the margin if a concept is not
used very often.

Theorem 0.1 Theorems will stand out in these red boxes, so they
are easy to spot.

Definition 0.2 Definitions will appear in the yellow boxes. The defin-
ing notions will appear in red.

Lemma 0.3 Lemmas and propositions are in green boxes.

If a reminder is a definition, it will appear in a yellow box. Sometimes
we will introduce a notion without paying too much attention to it. In
such cases we will also use the yellow boxes on the right.

This is a side definition.
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Prologue: The story of Carla

Meet Carla.

Carla. Source: Pngwing.

Carla is a young mathematician, ready to take on the world. One day
she was sitting in her office, re-reading a paper she had written and
was just published, when she suddenly almost spilled the cup of
chamomile tea (or at least that is what she claims it was) in her hand.
There was a glaring mistake in one of her proofs. How could she miss
that?! Hmmmmm, how could all the reviewers miss that? Well, she
had been pretty tired in the days before the submission deadline,
as she (as usually) procrastinated with writing the paper to the last
minute, so she had probably not been as focused as she would have
wanted. And if she was completely honest with herself, every time she
had reviewed a paper thus far, she had read some parts more thor-
oughly than others. To calm her nerves she tried to fix the mistake,
setting down the cup in her shaking hands first. Of course, since the
mistake was not just a typo, it was not so easy.

When hours passed with no luck, she left the office frustrated and
tired, thanking herself she took the train to work that morning instead
of driving herself. Observing the changing scenery from the train win-
dows, her mind drifted to the events of that day. Naturally, she will
publish the corrected version of the proof – if she ever finds a way to
fix it. But what bothered her the most was that the mistake slipped
through the cracks and made its way to being published at all.

Seeking consolation and a little bit of schadenfreude, Carla opened
up her internet browser and searched for similar stories. She stum-
bled upon the story of Vladimir Voevodsky, a Russian mathemati-
cian with an impressive résumé, after all he did receive the presti-
gious Field’s medal for his work. It turns out that after Voevodsky
was awarded the medal, he wrote another paper [81] [81]: Kapranov et al. (1991), “∞-

groupoids and homotopy types”
which was pub-

lished and only after a mistake was found [131]
[131]: Simpson (1998), Homotopy types
of strict 3-groupoids

. Concerned with the
drawbacks of the human-reviewing process, he grew increasingly con-
vinced that proofs should be checked by computers, as well as hu-
mans. He used his mathematical influence to accelerate the research
in the area of proof assistants, computer software that does what the
names suggests - assists humans in proving and checking the proofs.
The evolution of the proof assistants goes hand in hand with the de-
velopment of mathematical foundations, of which type theories, as



it seems to Carla, are the most popular candidates on which proof
assistants are based.

Carla was intrigued. She heard people mentioning proof assistants
before, but so far she brushed it off as a special niche for the fanat-
ics of constructive mathematics. A little disappointed with her own
prejudice, yet curious of this new world, she decided to look into the
matter a little further. She found out that there are many proof as-
sistants based on type theories [5, 43, 45, 78, 108, 141, 146]

[45]: (2021), The Coq proof assistant,
version 2021.02.2
[5]: (2021), The Agda proof assistant
[108]: Moura et al. (2015), “The Lean
Theorem Prover (System Description)”
[146]: Vezzosi et al. (2019), “Cubical Agda:
A Dependently Typed Programming
Language with Univalence and Higher
Inductive Types”
[141]: The RedPRL Development Team
(2020), The ‘redtt’ theorem prover.
[43]: Cohen et al. (2018), The ‘cubicaltt’
theorem prover.
[78]: Isaev (2021), Arend Standard Library

and that
their underlying theories differ. As a mathematician, she was dazzled
by the fact that Georges Gonthier and his team machine-checked the
proof of the odd order theorem [64] [64]: Gonthier et al. (2013), “A Machine-

Checked Proof of the Odd Order
Theorem”

, a proof renowned to be very long
and difficult.

What further fascinated her was how using proof assistants one could
not only machine-check mathematical proofs, but also formalize cor-
rectness of computer programs. What a revelation! As a fairly experi-
enced programmer she was well aware of the usual way people test
correctness of computer programmed functions: they choose a set of
inputs and check if the function computes the outputs they expect.
Of course they try to cover as many different examples of input as
they can think of, but well, who trusts the programmers to catch all
the cases? The situation is a bit better if one uses typed programming
languages. If a function is supposed to return a list of integers, but
suddenly it tries to output a string, the compiler will already catch the
error and impose some discipline. But even then, errors that respect
the type-system will not get caught (unless there is a specific input-
output test for it somewhere). This (to Carla’s eyes new) paradigm of
proving correctness of programs was a player on a whole other level.
We do not just test the correctness, we can prove a program fits its
specification in every possible case. Carla could quickly imagine use
cases for such a tool, when we want to be absolutely super duper
sure the software is correct, like sending a rocket on Mars and know-
ing the navigation system is bug-free, or having a laser operation on
your eyes when every millimeter makes a difference. Of course not ev-
ery computer bug is lethal, in themajority of cases it just causes some
frustration when an application on the phone unexpectedly crashes.
With her experience, Carla soon realized that it takes a substantial
amount of knowledge, work, time, and energy to verify program cor-
rectness for a sizable project, but a price worth paying for the “lethal”
cases. A bit of further investigation into the subject led Carla to learn
that an entire compiler for a version of programming language C was
verified by Xavier Leroy and his team in a project called CompCert [90] [90]: Leroy (2009), “A formally verified

compiler back-end”
.

This is definitely a game changer as it eliminates the possibility of a
bug occurring in the compiler itself, so a programmer who translates
her programs to byte-code using this verified compiler has only but
herself to blame for the possible mistakes in the code.

Carla was overwhelmed with relief, joy and all this new knowledge.
She decided then and there to try proof assistants out herself. But
where to start? The gods of the internet guided her to the Curry-
Howard correspondence [48, 49, 74, 149] [149]: Wadler (2015), “Propositions as

Types”
[48]: Curry (1934), “Functionality in
Combinatory Logic”
[49]: Curry et al. (1958), Combinatory
logic. Vol. I
[74]: Howard (1980), “The Formulae-as-
Types Notion of Construction”

relating her knowledge of
logic with type theory. She never thought of proofs as objects before,
to her they were justifications that theorems and propositions were
correct, but now proofs are thought of elements of types written as



1: It is not actually that trivial. We need
to introduce dependent product types
and dependent sums and have a whole
discussion about the law of excluded
middle. But this is the story for another
time, posssibly a textbook.

2: Implicit arguments are a common
techique also in proof assistants other
than Coq.

𝑝 : 𝐴. To Carla this was a little unusual. If proofs are objects, how do
we use logical connectives? Let us see, if Carla wants to prove that 𝑎
and 𝑏 holds, then she needs to provide two proofs, one for 𝑎 and one
for 𝑏, so a pair of proofs.

proving 𝑎 ∧ 𝑏 corresponds to (𝑝1 , 𝑝2) : 𝐴 × 𝐵
With an implication 𝑎 =⇒ 𝑏 we know that if we have a proof of 𝑎,
then we have a proof of 𝑏, so it is like a function that takes a proof of
𝑎 and provides a proof of 𝑏.

proving 𝑎 =⇒ 𝑏 corresponds to 𝑝 : 𝐴→ 𝐵

Easy peasy lemon squeezy.1

Before Carla could start playing around with a proof assistant, she
was faced with a decision of which one to use. Since she had no pre-
vious experience with proof assistants, all the factors that influence
experts, like the nature of the problem to be formalized, expressivity
of the underlying type theory, availability of the necessary libraries,
performance of a proof assistant etc., were not yet relevant to her. At
the end, she decided to start with Coq [45] [45]: (2021), The Coq proof assistant,

version 2021.02.2
, claiming it was because

it was so widely used (as she remains in denial that it was because
of the name).

Over the course of time, with grit, perseverance, and a lot of help from
the kind-hearted type-theory experts, Carla gradually gained experi-
ence with formalizing proofs. One day she was finally ready to tackle
the proof from her paper – the one that almost spilled her chamomile
tea. Now that she enriched her mathematical intuition, it was easy to
spot the mistake and, what’s more, the proof assistant helped her
identify and solve the problem. But there was another upside: Carla
was now confident that her proof was correct and she will not have
to go through the same emotional turmoil again. She felt like a super-
woman!

Carla as a superwoman. Source: Png-
wing and TopPng.

While formalizing (or at least trying to fomalise) proofs, Carla learned
some of the intricacies of type theories and proof assistants. For ex-
ample, one of the convenient features of Coq2 is that Carla (and the
other users) can declare some of the arguments of functions implicit
like in the definition of the identity function below.

Definition id {A : Type} (x : A) : A := x.

The function as defined takes two arguments: a type argument A and a
term argument x of type A. But the first argument is implicit (denoted



3: Equality checking algorithms are are
also an essential part of other proof as-
sistants.

by the curly braces {} ), as it can be inferred if we compute the type of
the second argument. Thus Carla does not have to write the type of
the domain (and codomain) of the identity function every time she
uses it. What a relief!

Another important feature, Carla learned, is that Coq knows how to
compute with terms. The command

Eval compute in double (double (S 0)).

computes to S(S(S(S(0)))) which is a unary representation of the num-
ber 4, where double is suitably defined function that doubles a nat-
ural number and S is the successor. Behind the scenes is an equality
checking algorithm3 with a normalization component that enables
such (and much more complex) computations.

Carla also observed there is a lot of mathematical knowledge already
formalized in several libraries, like UniMath [148] [148]: Voevodsky et al. UniMath — a

computer-checked library of univalent
mathematics

for example, and
even more still missing formalization. However, what troubled Carla
is that the libraries, and what is worse the underlying type theories,
between proof assistants are not always compatible. What can be
proven in a type theory depends on its rules and axioms, which are
specific to the theory itself. But Carla knows that not every proof re-
lies on all the rules and axioms of the theory, just the ones that are
used in deriving it, after all there are theorems proven using many dif-
ferent type theories. Maybe if a fragment of the theory used to prove
a theorem is compatible with another theory, we could translate the
proof to another proof assistant?

Carla’s sharp mathematical intuition screamed that if we are going to
fiddle with the proofs and translate them into another type theory,
there better be a precise mathematical (meta-)theory that allows us
to do just that. Looking for a general and possibility syntactic defini-
tion of a type theory and transformations of type theories, she found
some very deep and elaborate notions [15, 22, 34, 52, 66, 69, 144, 151] [22]: Bauer et al. (2020), A general

definition of dependent type theories
[69]: Haselwarter et al. (2021), Finitary
type theories with and without contexts
[144]: Uemura (2019), A General Frame-
work for the Semantics of Type Theory
[66]: Harper (2021), An Equational
Logical Framework for Type Theories
[52]: Dybjer (1995), “Internal Type
Theory”
[34]: Cartmell (1986), “Generalised
algebraic theories and contextual
categories”
[15]: Awodey (2018), “Natural models of
homotopy type theory”
[151]: Winterhalter (2020), “Formalisa-
tion and Meta-Theory of Type Theory”

,
but unfortunately none of them analyzed syntactic transformations
to the extent she had hoped for.

With a playful mind and an enthusiastic heart, inspired by all the
meta-theoretic mathematical definitions of type theory Carla turned
to proof assistants to experiment. So where better to start than in a
general-type-theory purpose proof assistant Andromeda 2 [9]

[9]: Bauer et al. The Andromeda proof
assistant

. While
happy that she can input the rules of the desired type theory herself,
she was soon getting frustrated with the fact that the stupid machine
did not know how to compute anything. Andromeda 2 was lacking the
support of an equality checking algorithm. But how do we design an
equality-checking algorithm when we don’t even know what equality
rules will appear in the theory?

Carla’s heart sank. Yet again the lack of meta-theoretic results ob-
structed her experiments. It was definitely the time to make another
chamomile tea.



Introduction 1.
Despite there being several instances of type theories [26, 36, 42, 47,
97–100, 142] [98]: Martin-Löf (1982), “Constructive

mathematics and computer program-
ming”
[100]: Martin-Löf (1998), “An intuitionis-
tic theory of types”
[97]: Martin-Löf (1975), “An intuitionistic
theory of types: predicative part”
[99]: Martin-Löf (1984), Intuitionistic
type theory
[47]: Coquand et al. (1988), “Inductively
defined types”
[36]: Church (1940), “A Formulation of
the Simple Theory of Types”
[142]: The Univalent Foundations
Program (2013), Homotopy Type Theory:
Univalent Foundations of Mathematics
[42]: Cohen et al. (2015), “Cubical Type
Theory: A Constructive Interpretation of
the Univalence Axiom”
[26]: Bezem et al. (2019), “The Univa-
lence Axiom in Cubical Sets”

, their general (syntactic) definitions are a fruit of recent
work [22, 66, 69, 144]

[22]: Bauer et al. (2020), A general
definition of dependent type theories
[69]: Haselwarter et al. (2021), Finitary
type theories with and without contexts
[144]: Uemura (2019), A General Frame-
work for the Semantics of Type Theory
[66]: Harper (2021), An Equational
Logical Framework for Type Theories

. These definitions opened up a new meta-level
on which we can analyze properties of type theories, what all the
instances of type theories have in common and how they interact.
In this thesis we develop a meta-analysis of type theories as syn-
tactically defined in [69]. We investigate interactions between type
theories by defining several notions of transformations and proving
their meta-theoretic properties. The usefulness of said transforma-
tions culminates in the definition of an elaboration of a type theory
and the proof of the elaboration theorem. Since a big part of the mo-
tivating machinery for the development of type theories is their use
in proof assistants, we also address one meta-theoretic aspect that
closely relates to the implementations, namely the general equality-
checking algorithm which we also implemented in the Andromeda 2
proof assistant [9]

[9]: Bauer et al. The Andromeda proof
assistant

.

There are three integral parts of this thesis. The first formally de-
scribes the type theories we work with, the second part analyzes
transformations and the third part gives the equality checking algo-
rithm. Instead of introducing all the concepts at once, each part is
given their own introduction (Chapter 2, Chapter 6, Chapter 12). We
thus invite the readers, who are afraid of drowning in technicalities,
to read those introductory chapters first.

1.1. Aims of the thesis

The aim of the thesis is to provide a meta-analysis of interactions of
type theories in the form of their transformations which satisfy the
following criteria

▶ they work in the fully general setting of finitary type theories
of [69] [69]: Haselwarter et al. (2021), Finitary

type theories with and without contexts

,
▶ transformations are syntactic in nature, so they are pertinent to

possible implementations in proof assistants,
▶ preservation of derivability is inherent to transformations of

type theories,
▶ we can exhibit some useful examples,

and to develop the meta-theory of type theories for designing a gen-
eral equality checking algorithm which

▶ works in the fully general setting of finitary type theories of [69] [69]: Haselwarter et al. (2021), Finitary
type theories with and without contexts

,
▶ is sound,
▶ permits possible implementations,
▶ works as expected on well-behaved theories seen in practice.



1. Introduction 2

We approach the first goal by defining notions of a syntactic transfor-
mation, type-theoretic transformation and an elaboration map, prove
they satisfy the desired properties and exhibit their usefulness in the
elaboration theorem. The second goal is achieved by proposing the
condition of object-invertibility which identifies the rules suitable to
be used in an equality checking algorithm, and by designing a sound
algorithm and implementing it in Andromeda 2.

1.2. Overview and structure of the thesis

The thesis is split into three parts: ‘Finitary Type Theories’, ‘Transfor-
mations of type theories’ and ‘An equality checking algorithm’. The
purpose of the first part is to give the background and notations used
throughout the thesis. It describes what we mean by a type theory
and provides the necessary meta-theorems. The second part is dedi-
cated to transformations of type theories, their definitions and meta-
theoretic properties. In the third part we develop a general equality
checking algorithm for dependent type theories and prove that it is
sound.

Instead of having a long introduction and an even longer conclusion,
each part has its own introduction (Chapter 2, Chapter 6, Chapter 12)
with a specific section that describes contributions (Section 2.4, Sec-
tion 6.1, Section 12.1). There is also a related work section for every part
individually (Section 2.3, Section 11.1, Chapter 17). Thus the reader gets
introduced to the concepts right before they are being used and can
discuss about them while they are still fresh in mind.

The thesis ends with some concluding remarks (Chapter 18).

Finitary type theories

We start in Chapter 2 with a brief description of the development
of type theories, especially focusing on the general definitions given
in the recent years. We then proceed by describing one such defini-
tion, namely the finitary type theories proposed by Haselwarter and
Bauer [69] [69]: Haselwarter et al. (2021), Finitary

type theories with and without contexts
following the presentations that appears in [24]

[24]: Bauer et al. (2021), An extensible
equality checking algorithm for depen-
dent type theories

. We first
describe the syntactic entities (Chapter 3) that appear in the four
Martin-Löf style judgement forms and then add the deductive sys-
tem (Section 4.1) given by the raw rules (Section 4.2) to define a raw
type theory (Section 4.3). Since such theories can have some circular-
ities in their derivations, we give definitions of finitary type theories
and standard type theories (Section 4.4). In the Chapter 5 we list some
basic meta-theorems about type theories and prove some more (Sec-
tion 5.3) that are needed in the rest of the thesis.

Transformations of type theories

This part of the thesis is dedicated to studying meta-theoretic proper-
ties of transformations between type theories. We begin with an intro-
duction (Chapter 6) that describes the stipulations we try to adhere
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to. Since the syntactic transformations we define in Chapter 8 form
a relative monad for syntax, we first review the definition of relative
monads in Chapter 7 and describe the shape of relative monads that
arise from substitutions of variables and instantiations of metavari-
ables. In Chapter 8 we also prove that the syntactic transformations
indeed satisfy the conditions for a relative monad and we thus orga-
nize their (somewhat expected) meta-theoretic properties. Transfor-
mations are then upgraded to type-theoretic transformations to ac-
count for the derivability structure of the type theories. In Chapter 9
we also prove some meta-theorems about the type-theoretic trans-
formations, such as that they preserve derivability (Theorem 9.1.3) and
how judgementally equal transformations interact. As defined, type-
theoretic transformations are morphisms in the category of type the-
ories (Section 9.2) which we also prove has an initial object and co-
products.

In Section 9.3 we exhibit the scope of our definition on some exam-
ples (and non-examples) of type-theoretic transformations, such as
the propositions as types translation (details of which are in the Ap-
pendix Chapter A) and definitional extension. However, the major use
case for our notion of type-theoretic transformations is elaboration.
In Chapter 10 we precisely define what is an elaboration of a finitary
type theory and prove it is universal. We also state and prove the
elaboration theorem (Theorem 10.2.1) stating that every finitary type
theory can be elaborated, and inspect some algorithmic properties
of elaboration in Section 10.3.

We conclude the part in Chapter 11 with a discussion about related
work and future directions.

Equality checking algorithm

The third part of the thesis is published in [24] [24]: Bauer et al. (2021), An extensible
equality checking algorithm for depen-
dent type theories

. In the introductory
chapter (Chapter 12) we comment on some design decision made
in the development of the equality checking algorithm as well as
what are our original contributions (Section 12.1). Chapter 13 describes
object-invertibility, a meta-theoretic condition on equality rules which
ensures the rules can be used in the algorithm. We also provide a syn-
tactic condition in the form of patterns. We then formally define the
computation rules and extensionality rules in Chapter 14 and provide
some examples.

The algorithm itself in given in Chapter 15. We start with an overview
and describe the components of the algorithm. The normalization
phase is given in Section 15.1 and the type-directed phase in Sec-
tion 15.2. We prove the algorithm is sound (Section 15.3) and then
discuss the design of the algorithm in Section 15.4.

The algorithm was implemented in the Andromeda 2 proof assistant.
We describe the implementation in Chapter 16 and give examples
in Section 16.1 to showcase the scope and interesting use-cases of
the algorithm.

The part concludes with a chapter on related work Chapter 17.
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The era of type theories 2.
Type theories are formal systems, which serve many purposes rang-
ing from foundations of mathematics to applications in computer sci-
ence, usually in the form of proof assistants. They are presented as
sets of reasoning rules that govern types, terms, and computations
with these. In this part of the thesis we describe what precisely we
mean by a type theory, starting with some of the work our definition
is based on.

2.1. Development of type theories

The history of development of type theories is a very broad subject,
so we only mention a few crucial points in their development.

Bertrand Russell [129] [129]: Russell (1908), “Mathematical
Logic as Based on the Theory of Types”

conceived type theory as a response to the cri-
sis in foundations of mathematics that was caused by the discovery
of his and other paradoxes of naïve set theory. Russell and White-
head epitomized formal type theory in their famous work Principia
Mathematica [150]

[150]: Whitehead et al. (1925), Principia
Mathematica

. Influenced by Russel’s idea, Church [36, 37] [36]: Church (1940), “A Formulation of
the Simple Theory of Types”
[37]: Church (1941), The Calculi of
Lambda Conversion. (AM-6)

de-
veloped his theory of simple types in combination with 𝜆-calculus,
which paved the way for development of computational type theory
as Church, Turing and Kleene showed that 𝜆-calculus is a universal
model of computation which can be used to simulate any Turing ma-
chine. The calculus was later on applied in computer science in the
theory of programming languages [121]

[121]: Pierce (2002), Types and Program-
ming Languages.

An important step in development of proof assistants is the Curry-
Howard correspondencewhich connected types and propositions, logic
and programming, computations and natural deduction. In 1976 with
De Bruijn and his Automath, the first proof assistant that enabled
manipulations of derivations, dependent types were introduced. The
evolution of dependent type theories became tightly intertwined with
development of proof assistants.

These concepts resonated with Per Martin-Löf [97–100]

[100]: Martin-Löf (1998), “An intuitionis-
tic theory of types”
[97]: Martin-Löf (1975), “An intuitionistic
theory of types: predicative part”
[98]: Martin-Löf (1982), “Constructive
mathematics and computer program-
ming”
[99]: Martin-Löf (1984), Intuitionistic
type theory

, when he pio-
neered his own type system, variants of which are nowadays known
as Martin-Löf type theories (MLTT). They were originally designed as a
formal foundation of constructive mathematics. Through years MLTT
evolved and passed through several changes. At first it postulated a
type of all types and it had no identity types. Then there was Exten-
sional Type Theory (ETT), which employs equality reflection, and later
Intentional Type Theory (ITT) which is the foundation of the proof as-
sistant Agda [5]

[5]: (2021), The Agda proof assistant

.

In parallel withMartin-Löf, Milner worked on the LCF proof checker [103]

[103]: Milner (1972), Logic for Com-
putable Functions: description of a
machine implementation

,
which lead to development of HOL proof assistants [76]

[76]: (2016), Isabelle

and the ML
programming language[65]

[65]: Gordon et al. (1978), “A Metalan-
guage for Interactive Proof in LCF”

. Around the same time Girard and Reynolds
[60, 128] [60]: Girard (1972), “Interprétation Fonc-

tionelle et Élimination Des Coupures de
l’arithmétique d’ordre Supérieur”
[128]: Reynolds (1974), “Towards a theory
of type structure”

independently designed System F.
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Based on Martin-Löf’s work a number of other type theories came
to life. In 1986 Constable and his group invented the proof assistant
Nuprl and with it Computational Type Theory [6, 44]

[44]: Constable et al. (1986), Implement-
ing mathematics with the Nuprl proof
development system
[6]: Allen et al. (2006), “Innovations in
computational type theory using Nuprl”

. Thierry Coquand
and Gérard Huet defined Calculus of Constructions [46]

[46]: Coquand et al. (1988), “The Calcu-
lus of Constructions”

that Coquand
together with Christine Paulin upgraded to Calculus of Inductive Con-
structions [47]

[47]: Coquand et al. (1988), “Inductively
defined types”

which is the basis of the widely used proof assistants
Coq [45] and Lean [88, 106, 109].

In the early 2000s it was observed that identity types of ITT have
homotopical content: identifications between terms can be thought
of as paths. This new outlook gave rise to Homotopy Type Theory
(HoTT) [142, 147] [147]: Voevodsky (2011), “Univalent

Foundations of Mathematics”
[142]: The Univalent Foundations
Program (2013), Homotopy Type Theory:
Univalent Foundations of Mathematics

, which inspired a lot of new research. The need for
use of HoTT resulted in implementations in proof assistants, such as
the HoTT Library [21] and UniMath [148].

The lack of explicit computational content in the univalence axiom
motivated researchers to investigate Cubical Type Theories [25, 42, 91] [42]: Cohen et al. (2015), “Cubical Type

Theory: A Constructive Interpretation of
the Univalence Axiom”
[25]: Bezem et al. (2014), “A Model of
Type Theory in Cubical Sets”
[91]: Licata et al. (2015), “A Cubical Ap-
proach to Synthetic Homotopy Theory”

that are still being intensively studied to this day. There are also sev-
eral implementations of variants of cubical type theories, such as cu-
bicaltt [43], redTT [141], Cubical Agda [146] and Arend [78].

2.2. Semantic approach to type theories

To be able to rely on a type theory, one has to prove that it does not
derive unsound judgments. While in this thesis we use syntactic ar-
guments to prove the correctness of our constructions, the semantic
approach is often more efficient and powerful. In sematic approach
we construct a model of type theory, a mathematical structure that
interprets its inference rules, and study its properties. The internal
language is then a part of the correspondence between the theory
and the model.

There are several examples of such correspondence between type
theories and models. The first is commonly attributed to Lambek and
Scott [87]

[87]: Lambek et al. (1986), Introduction
to Higher Order Categorical Logic

for showing that cartesian closed categories are a model of
simply-typed 𝜆-calculus. In 1978 Cartmell introduced generalised al-
gebraic theories and contextual categories in his thesis [33]

[33]: Cartmell (1978), “Generalised
algebraic theories and contextual
categories”

. A model
of MLTT was provided by Seely in 1984 in the form of locally cartesian
closed categories [130]

[130]: Seely (1984), “Locally cartesian
closed categories and type theory”

and Martin Hofmann and Thomas Streicher
constructed the groupoid model [73]

[73]: Hofmann et al. (1994), “The
Groupoid Model Refutes Uniqueness of
Identity Proofs”

. Simplicial sets provided the first
known model of univalent type theory [82, 137]

[82]: Kapulkin et al. (2021), “The simpli-
cial model of Univalent Foundations
(after Voevodsky)”
[137]: Streicher (2014),

and cubical sets for
cubical type theories [25, 26, 42, 92, 111]

[25]: Bezem et al. (2014), “A Model of
Type Theory in Cubical Sets”
[26]: Bezem et al. (2019), “The Univa-
lence Axiom in Cubical Sets”
[42]: Cohen et al. (2015), “Cubical Type
Theory: A Constructive Interpretation of
the Univalence Axiom”
[111]: Orton et al. (2018), “Axioms for
Modelling Cubical Type Theory in a
Topos”
[92]: Licata et al. (2018), “Internal
Universes in Models of Homotopy Type
Theory”

.

There are also numerous models of a type theory such as Bart Ja-
cobs’ comprehension categories [79]

[79]: Jacobs (1993), “Comprehension
categories and the semantics of type
dependency”

, display map categories [139]

[139]: Taylor (1986), “Internal Complete-
ness of Categories of Domains”

by
Paul Taylor, categories with attributes [34, 105]

[105]: Moggi (1991), “A category-theoretic
account of program modules”
[34]: Cartmell (1986), “Generalised
algebraic theories and contextual
categories”

, Peter Dybjer’s cate-
gories with families [52]

[52]: Dybjer (1995), “Internal Type
Theory”

(which are equivalent to categories with at-
tributes) and Steve Awodey’s natural models [15]

[15]: Awodey (2018), “Natural models of
homotopy type theory”

(which, as Awodey
noted, are also equivalent to categories with families of Dybjer [52]).
Among these notions of a model, the closest to the syntax of type
theories are categories with families and for a while they were con-
sidered a canonical notion of a model of a type theory. All these mod-
els are modeling a particular instance of a type theory. If we extend
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the theory with some constructors, we need to update the model as
well.

2.3. General definitions of type theories and
related work

With increasing number of instances of type theories, the need for
a general definition of a type theory gradually surfaced. Proof assis-
tants strived to extend the underlying type theory in various ways.
One such approach are syntactic models [28, 31, 71, 115] [71]: Hofmann (1997), “Extensional

Constructs in Intensional Type Theory”
[28]: Boulier et al. (2017), “The next 700
syntactical models of type theory”
[31]: Boulier (2018), “Extending type
theory with syntactic models. (Etendre
la théorie des types à l’aide de modèles
syntaxiques)”
[115]: Pédrot et al. (2017), “An effectful
way to eliminate addiction to depen-
dence”

in which one
extends type theories via shallow embeddings. To extend judgemen-
tal equality, some proof assistants allow limited rewrite rules as for
example in Coq Modulo Theory [18], Agda’s rewrite rules [38, 39, 41]
or Dedukti [50]. On the semantic side, categories with families were
considered the canonical model for type theories, but they still need
to be adapted for possible extensions.

A general, mathematically precise definition of type theories is a fruit
of recent work. In 2016 Valery Isaev [77] [77]: Isaev (2017), Algebraic Presenta-

tions of Dependent Type Theories
proposed a definition of a

general type theory as a special essentially algebraic theory. A model
of said type theory is then a special case of a model of the underlying
essentially algebraic theory. His work is equivalent to a generalization
of a contextual category.

In 2020 Andrej Bauer, Peter LeFanu Lumsdaine and Philipp Georg Hasel-
warter proposed a variant of general type theories [22] [22]: Bauer et al. (2020), A general

definition of dependent type theories
. The definition

is syntactical and proceeds in stages, from raw syntax to well-formed
rules. General type theories have been modified and extended by
Bauer and Haselwarter in the form of finitary type theories [69]

[69]: Haselwarter et al. (2021), Finitary
type theories with and without contextsthat

are also presented without contexts as context-free type theories. The
two definitions are very similar, the most notable difference being the
treatment of metavariables: in general type theories metavariables
extend the signature, while in finitary type theories they are given
separately in a metavariable context.

We use finitary type theories [69] as our definition of type theories.
We summarize it in Chapter 3 and Chapter 4. The context-free repre-
sentation of finitary type theories has also been implemented in the
Andromeda 2 proof assistant [9]

[9]: Bauer et al. The Andromeda proof
assistant

.

For representing logics, the logical frameworks [67, 118]

[67]: Harper et al. (1993), “A Framework
for Defining Logics”
[118]: Pfenning (2001), “Logical Frame-
works”

are exten-
sively used. Numerous implementations of logical frameworks such
as Twelf [119]

[119]: Pfenning et al. (1999), “System
Description: Twelf — A Meta-Logical
Framework for Deductive Systems”

and Beluga [120]

[120]: Pientka et al. (2010), “Beluga:
A Framework for Programming and
Reasoning with Deductive Systems
(System Description)”

have been used to study the meta-
theoretic properites of formal deductive systems and programming
languages. In this spirit have Taichi Uemura [144, 145] [144]: Uemura (2019), A General Frame-

work for the Semantics of Type Theory
[145]: Uemura (2021), “Abstract and
Concrete Type Theories”

in 2019 and
Rober Harper [66]

[66]: Harper (2021), An Equational
Logical Framework for Type Theories

in 2021 provided logical frameworks for represent-
ing general dependent type theories. Uemura also presents another
(more semantic) definition of type theories, namely (small) categories
with representable maps, and describes the models of such type the-
ories. Uemura’s models are a generalisation of natural models [15]

[15]: Awodey (2018), “Natural models of
homotopy type theory”

.
Unlike with the definition of Bauer, Haselwarter and Lumsdaine that
gives the four judgement forms in the style of Martin-Löf, Uemura’s
definition of type theory allows for other judgement forms as well
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and can thus express special judgement forms of cubical type theory,
pure type systems [17] [17]: Barendregt (1993), “Lambda Calculi

with Types”, two-level type theory [7, 10]
[10]: Annenkov et al. (2019), Two-Level
Type Theory and Applications
[7]: Altenkirch et al. (2016), “Extending
Homotopy Type Theory with Strict
Equality”

and polymorphic
type theory [59, 61, 127]

[59]: Girard (1971), “Une Extension De
ĽInterpretation De Gödel a ĽAnalyse,
Et Son Application a ĽElimination Des
Coupures Dans ĽAnalyse Et La Theorie
Des Types”
[127]: Reynolds (1974), “Towards a Theory
of Type Structure”
[61]: Girard et al. (1989), Proofs and Types

.

The two definitions of type theories; the one of Bauer, Haselwarter
and Lumsdaine; and the one proposed by Uemura; have been devel-
oped in parallel, so a more detailed comparison can be found in [69]
and [145].

On the side of proof assistants we should also mention the MetaCoq
project [132, 133]

[132]: Sozeau et al. (2020), “The MetaCoq
Project”
[133]: Sozeau et al. (2019), “Coq Coq
correct! Verification of Type Checking
and Erasure for Coq, in Coq”

, which implements and certifies the type-checker
for the Coq proof assistant, tackling the practical issues when the
implementation and specification differ.

2.4. Contributions

The purpose of this part of the thesis is to give the necessary back-
ground and notations used throughout the thesis. The definitions of
the syntactic entities (Chapter 3) and type theories (Chapter 4, Chap-
ter 5) are mainly the work of Philipp Georg Haselwarter and Andrej
Bauer, and are taken from [69] [69]: Haselwarter et al. (2021), Finitary

type theories with and without contexts
, more or less in the form published

in [24]
[24]: Bauer et al. (2021), An extensible
equality checking algorithm for depen-
dent type theories

(extended with some additional explanations).

The original contributions are some additionalmeta-theorems, specif-
ically Theorem 5.1.5 about judgementally equal instantiations which
was developped jointly with Haselwarter and Bauer, and Section 5.3
on meta-theorems which contains

▶ meta-theorems about the natural type: Proposition 5.3.1, Corol-
lary 5.3.2, Corollary 5.3.3,

▶ meta-theorems about judgementally equal instantiations: Lemma 5.3.4,
Lemma 5.3.5, Proposition 5.3.6.



Syntax of Finitary Type Theories 3.
We give here only an overview of the syntax of such theories and refer
the reader to [69] [69]: Haselwarter et al. (2021), Finitary

type theories with and without contexts
for a complete exposition. Following [69], we study

syntactic presentations of type theories, in the sense that theories are
seen as syntactic constructions, and the meta-theorems are obtained
by analyzing abstract syntax. The motivation for such an approach is
implementation in proof assistants, specifically in Andromeda 2. It is
expected that the syntactic presentations will match nicely with some
of the modern semantic accounts of type theories, and finitary type
theories will be useful beyond being the theoretical support for proof
assistants.

The definition captures dependent type theories in the Martin-Löf
style, i.e., theories that have four judgement forms (for terms, types,
type equations, and typed term equations), and hypothetical judge-
ments standing in contexts of metavariables and variables.

This representation subsumes a wide class of type theories, includ-
ing intensional and extensional Martin-Löf type theory, possibly with
Tarski-style universes, homotopy type theory, Church’s simple type
theory, simply typed λ-calculi, and many others. And as mentioned
in Section 2.3 it is also easy to find counter-examples: in cubical type
theory the interval type has a special judgement form, impredicative
polymorphic λ-calculi quantify over all types, pure type systems or-
ganise judgement forms differently, etc.

3.1. Signatures and arities

In a raw type theory there are four judgement forms:

▶ “𝐴 type” asserting that 𝐴 is a type,
▶ “𝑡 : 𝐴” asserting that 𝑡 is a term of type 𝐴,
▶ “𝐴 ≡ 𝐵 by ★Ty” asserting that types 𝐴 and 𝐵 are equal, and
▶ “𝑠 ≡ 𝑡 : 𝐴 by ★Tm” asserting that terms 𝑠 and 𝑡 are equal at

type 𝐴.

We indicate these with tokens Ty, Tm, EqTy and EqTm respectively. To
each token there also corresponds a syntactic class. Expressions of
class Ty are the type expressions, and those of class Tm are the term ex-
pressions. These are formed using (primitive) symbols and metavari-
ables, see Section 3.2, each of which has an associated arity, as ex-
plained below. The symbols should be thought of as the primitive
type and term formers, while the metavariables shall be used to re-
fer to the premises of a rule, and as pattern variables in the equality
checking algorithm. The only expressions of syntactic classes EqTy and
EqTm are the dummy expressions ★Ty and ★Tm, which we both write
as ★ when no confusion can arise. These are formality, to be used
where one would normally record a proof term witnessing a premise,
but the premise is a judgemental equality, which is proof irrelevant.
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1: Sometimes we need to speak about
the metavariables from the arity of a
symbol (Section 8.2). In those cases we
can generate a metavariable shape with
metavariablesM1 , …,M𝑛 from the arity of
the symbol.

The arity of a metavariable M is a pair (c, 𝑛), where the syntactic class
c ∈ {Ty, Tm, EqTy, EqTm} indicates whether M is respectively a type,
term, type equality, or term equality metavariable, and 𝑛 ∈ ℕ is the
number of term arguments it accepts. The metavariables of syntactic
classes Ty and Tm are the object metavariables, and they participate
in formation of expressions, while those of syntactic classes EqTy and
EqTm are the equality metavariables, and are used to refer to equa-
tional premises.

Metavariable arities are collected inmetavariable shapes, lists of the
form [M1:(c1 , 𝑚1), . . . ,M𝑛 :(c𝑛 , 𝑚𝑛)], where (c𝑖 , 𝑚𝑖) is the metavariable
arity of M𝑖 .

The symbol arity (c, [(c1, 𝑛1), . . . , (ck , 𝑛𝑘)]) of a symbol S tells us that

1. the syntactic class of expressions built with S is c ∈ {Ty, Tm},
2. S accepts 𝑘 ∈ ℕ arguments,
3. the 𝑖-th argument has syntactic class c𝑖 ∈ {Ty, Tm, EqTy, EqTm}

and binds 𝑛𝑖 ∈ ℕ variables.

Symbol arity is a pair of a syntactic class c and a metavariable shape
without the names of metavariables1 [(c1, 𝑛1), . . . , (ck , 𝑛𝑘)].

Example 3.1.1 The arity of a type constant such as bool is (Ty, []), the
arity of a binary term operation such as + is (Tm, [(Tm, 0), (Tm, 0)]),
and the arity of a quantifier such as the dependent product Π is
(Ty, [(Ty, 0), (Ty, 1)]) because it is a type former taking two type argu-
ments, with the second one binding one variable.

The information about arities is collected in a signature, which maps
each symbol to its arity.

When discussing syntax, it is understood that such a signature and
a metavariable shape have been given, even if we do not mention
them explicitly. In the presence of a metacontext (Section 3.3), the
metavariable shape is deduced from there.

3.2. Expressions

The syntax of finitary type theories is summarized in the top part of
Figure 3.1. There are three kinds: type expressions, term expressions,
and arguments.

A type expression is an application S(𝑒1 , . . . , 𝑒𝑛) of a primitive sym-
bol S to arguments, or an application M(𝑡1 , . . . , 𝑡𝑛) of a metavari-
able M to terms. We write S and M instead of S() and M().
A term expression is a variable, an application of a primitive symbol
to arguments, or an application of a metavariable to terms. We strictly
separate free variables a, b, c, . . . from the bound ones 𝑥, 𝑦, 𝑧, . . ., a
choice fashioned after the locally nameless syntax [35, 102] [102]: McKinna et al. (1993), “Pure Type

Systems Formalized”
[35]: Charguéraud (2012), “The Locally
Nameless Representation”

, a com-
mon implementation technique in which free variables are represented
as names and the bound ones as de Bruijn indices.
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Type expression 𝐴, 𝐵 ::= S(𝑒1 , . . . , 𝑒𝑛) type symbol application�� M(𝑡1 , . . . , 𝑡𝑛) type metavariable application
Term expression 𝑠, 𝑡 ::= a free variable�� 𝑥 bound variable�� S(𝑒1 , . . . , 𝑒𝑛) term symbol application�� M(𝑡1 , . . . , 𝑡𝑛) term metavariable application

Argument 𝑒 ::= 𝐴 type argument�� 𝑡 term argument�� ★Ty dummy type equality argument�� ★Tm dummy term equality argument�� {𝑥}𝑒 abstraction (𝑥 bound)

Judgement thesis j ::= 𝐴 type 𝐴 is a type�� 𝑡 : 𝐴 𝑡 has type 𝑇�� 𝐴 ≡ 𝐵 by ★Ty 𝐴 and 𝐵 are equal types�� 𝑠 ≡ 𝑡 : 𝐴 by ★Tm 𝑠 and 𝑡 are equal terms at 𝐴
Abstracted judgement: J ::= j judgement thesis�� {𝑥:𝐴}J abstracted judgement (𝑥 bound)

Boundary thesis b ::= □ type a type�� □ : 𝐴 a term of type 𝐴�� 𝐴 ≡ 𝐵 by □ type equation boundary�� 𝑠 ≡ 𝑡 : 𝐵 by □ term equation boundary
Abstracted boundary B ::= b boundary thesis�� {𝑥:𝐴}B abstracted boundary (𝑥 bound)

Variable context Γ ::= [a1:𝐴1 , . . . , a𝑛 :𝐴𝑛]
Metacontext Θ ::= [M1:B1 , . . . ,M𝑛 :B𝑛]

Hypothetical judgement Θ;Γ ` J

Hypothetical boundary Θ;Γ ` B Figure 3.1.: The syntax of expressions,
boundaries and judgements.

An argument is a type expression, a term expression, a dummy ar-
gument ★Ty or ★Tm, or an abstracted argument {𝑥}𝑒 binding 𝑥 in 𝑒 .
Note that we take abstraction to be a basic syntactic operation. For
instance, we do not construe a 𝜆-abstraction as a variable-binding
construct 𝜆𝑥:𝐴 . 𝑡, but rather an application λ(𝐴, {𝑥}𝑡) of the primi-
tive symbol λ to two separate arguments 𝐴 and {𝑥}𝑡. We may abbre-
viate an iterated abstraction {𝑥1} · · · {𝑥𝑛}𝑒 as { ®𝑥}𝑒 , and similarly use
the vector notation elsewhere when appropriate. We permit ®𝑥 to be
empty, in which case { ®𝑥}𝑒 is just 𝑒 . To an argument we assign the
metavariable arity

ar({𝑥1} · · · {𝑥𝑛}𝑒) = (c, 𝑛),
where c ∈ {Ty, Tm, EqTy, EqTm} is the syntactic class of the non-abstracted
argument 𝑒 .

For an expression to be syntactically valid, all bound variables must
be bound by abstractions, and all symbol and metavariable applica-
tions respect their arities. That is, if the arity of S is (c, [(c1 , 𝑛1), . . . , (c𝑘 , 𝑛𝑘)])
then it must be applied to 𝑘 arguments 𝑒1 , . . . , 𝑒𝑘 with ar(𝑒𝑖) = (c𝑖 , 𝑛𝑖),
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and the expression S(𝑒1 , . . . , 𝑒𝑘) has syntactic class c. Similarly, an
object metavariable M of arity (c, 𝑛) must be applied to 𝑛 term ex-
pressions to yield an expression of syntactic class c.

We write 𝑒[𝑡/𝑥] for capture-avoiding substitution of 𝑡 for 𝑥 in 𝑒 , and
𝑒[®𝑡/®𝑥] or 𝑒[𝑡1/𝑥1 , . . . , 𝑡𝑛/𝑥𝑛] for simultaneous substitution of 𝑡1 , . . . , 𝑡𝑛
for 𝑥1 , . . . , 𝑥𝑛 . Expressions which only differ in the choice of names of
bound variables are considered syntactically identical (alternatively,
we could use de Bruijn indices for bound variables).

Given an expression 𝑒 , let mv(𝑒) and fv(𝑒) be the sets of metavari-
ables and free variables occurring in 𝑒 , respectively. A renaming of
an expression 𝑒 is an injective map 𝜌 with domain mv(𝑒) ∪ fv(𝑒) that
takes metavariables to metavariables and free variables to free vari-
ables. The renaming acts on 𝑒 to yield an expression 𝜌∗𝑒 by replacing
each occurrence of a metavariable M and a free variable a with 𝜌(M)
and 𝜌(a), respectively. We similarly define renamings of metacontexts,
variable contexts, judgements and boundaries, which are defined be-
low.

The renamings are also morphisms in
the relative monad for syntax in Sec-
tion 7.1.

3.3. Judgements and boundaries

We next discuss the syntax of judgements and boundaries, see the
bottom part of Figure 3.1.

To each of the judgement forms corresponds a judgement thesis:

▶ “𝐴 type” asserts that 𝐴 is a type,
▶ “𝑡 : 𝐴” that 𝑡 is a term of type 𝐴,
▶ “𝐴 ≡ 𝐵 by ★Ty” that types 𝐴 and 𝐵 are equal, and
▶ “𝑠 ≡ 𝑡 : 𝐴 by ★Tm” that terms 𝑠 and 𝑡 of type 𝐴 are equal.

The latter two have “ by ★” attached so that all boundaries can be
filled with a head, as we shall explain shortly. We normally write just
“𝐴 ≡ 𝐵” and “𝑠 ≡ 𝑡 : 𝐴”.
A boundary is a fundamental notion of type theory, although perhaps
less familiar. Whereas a judgement is an assertion, a boundary is a
goal to be accomplished:

▶ “□ type” asks that a type be constructed,
▶ “□ : 𝐴” that the type 𝐴 be inhabited, and
▶ “𝐴 ≡ 𝐵 by □” and “𝑠 ≡ 𝑡 : 𝐴 by □” that equations be proved.

An abstracted judgement has the form {𝑥:𝐴} J, where 𝐴 is a type
expression andJ is a (possibly abstracted) judgement. The variable 𝑥
is bound in Jbut not in 𝐴. As before, we write { ®𝑥: ®𝐴} j for an iterated
abstraction {𝑥1:𝐴1} · · · {𝑥𝑛 :𝐴𝑛} j. Similarly, an abstracted boundary
has the form {𝑥1:𝐴1} · · · {𝑥𝑛 :𝐴𝑛} b, where b is a boundary thesis, i.e.,
it takes one of the four (non-abstracted) boundary forms.

To an abstracted boundary we assign a metavariable arity by

ar({𝑥1:𝐴1} · · · {𝑥𝑛 :𝐴𝑛}B) = (c, 𝑛)



3. Syntax of Finitary Type Theories 13

where c ∈ {Ty, Tm, EqTy, EqTm} is the syntactic class of the non-abstracted
boundary b.

The placeholder □ in a boundary Bmay be filled with an argument 𝑒 ,
called the head, to give a judgement B𝑒 , as follows:

(□ type)𝐴 = (𝐴 type),
(□ : 𝐴) 𝑡 = (𝑡 : 𝐴),

(𝐴 ≡ 𝐵 by □) 𝑒 = (𝐴 ≡ 𝐵 by ★),
(𝑠 ≡ 𝑡 : 𝐴 by □) 𝑒 = (𝑠 ≡ 𝑡 : 𝐴 by ★),
({𝑥:𝐴}B) {𝑥}𝑒 = ({𝑥:𝐴}B𝑒 ).

We also define the operation B𝑒 ≡ 𝑒′ which turns an object bound-
ary B into an equation:

(□ type)𝐴 ≡ 𝐵 = (𝐴 ≡ 𝐵 by ★),
(□ : 𝐴) 𝑠 ≡ 𝑡 = (𝑠 ≡ 𝑡 : 𝐴 by ★),

({𝑥:𝐴}B) {𝑥}𝑒 ≡ {𝑥}𝑒′ = ({𝑥:𝐴}B𝑒 ≡ 𝑒′ ).

Example 3.3.1 If the symbols A and Id have arities

(Ty, []), and (Ty, [(Ty, 0), (Tm, 0), (Tm, 0)]),
respectively, then the boundaries

{𝑥:A}{𝑦:A} □ : Id(A, 𝑥, 𝑦) and {𝑥:A}{𝑦:A} 𝑥 ≡ 𝑦 : A by □

may be filled with heads {𝑥}{𝑦}𝑥 and {𝑥}{𝑦}★ to yield abstracted
judgements

{𝑥:A}{𝑦:A} 𝑥 : Id(A, 𝑥, 𝑦) and {𝑥:A}{𝑦:A} 𝑥 ≡ 𝑦 : A by ★Tm.

In Section 4.2, Θ will provide typing of metavariable and premises of
an inference rule, while at the level of raw syntax it just determines
metavariable arities. That is, Θ assigns the metavariable arity ar(B𝑖)
to M𝑖 .

A metavariable context Θ = [M1:B1 , . . . ,M𝑛 :B𝑛] may be restricted to
a metavariable context Θ(𝑖) = [M1:B1 , . . . ,M𝑖−1:B𝑖−1].
Themetavariable contextΘ is syntactically well formed when eachB𝑖

is a syntactically well-formed boundary over Σ and Θ(𝑖). In addition
each B𝑖 must be closed, i.e., contain no free variables.

The domain of Θ is the set |Θ | = {M1 , . . . ,M𝑛}. The metavariable
shape of Θ is the list [M1:𝛽1 , . . . ,M𝑛 :𝛽𝑛], where 𝛽𝑖 is the arity of the
metavariable M𝑖 deduced from B𝑖 : if B𝑖 = {𝑥1} . . . {𝑥𝑚}b then

▶ if b = □ type then 𝛽𝑖 = (Ty, 𝑚),
▶ if b = □ : 𝐴 then 𝛽𝑖 = (Tm, 𝑚),
▶ if b = 𝐴 ≡ 𝐵 by □ then 𝛽𝑖 = (EqTy, 𝑚),
▶ if b = 𝑎 ≡ 𝑏 : 𝐴 by □ then 𝛽𝑖 = (EqTm, 𝑚).
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We also define the set of the object metavariables of Θ to be

|Θ |obj = {M𝑖 | B𝑖 is an object boundary}.

A variable context Γ = [a1:𝐴1 , . . . , a𝑛 :𝐴𝑛] over a metavariable con-
text Θ is a finite list of pairs written as a𝑖 :𝐴𝑖 . It is considered syntacti-
cally valid when the variables a1 , . . . , a𝑛 are all distinct, and for each 𝑖
the type expression 𝐴𝑖 is valid with respect to the signature and the
metavariable arities assigned by Θ, and the free variables occurring
in 𝐴𝑖 are among a1 , . . . , a𝑖−1. A variable context Γ yields a finite map,
also denoted Γ, defined by Γ(a𝑖) = 𝐴𝑖 . The domain of Γ is the set
|Γ| = {a1 , . . . , a𝑛}.
A context is a pair Θ;Γ consisting of a metavariable context Θ and
a variable context Γ over Θ. A syntactic entity is considered syntacti-
cally valid over a signature and a context Θ;Γ when all symbol and
metavariable applications respect the assigned arities, the free vari-
ables are among |Γ|, and all bound variables are properly abstracted.
It goes without saying that we always require all syntactic entities to
be valid in this sense.

A (hypothetical) judgement has the form

Θ;Γ ` J,

where Θ;Γ is a context and J is an abstracted judgement over Θ;Γ.

In a hypothetical judgement

Θ; a1:𝐴1 , . . . , a𝑛 :𝐴𝑛 ` {𝑥1:𝐵1} · · · {𝑥𝑚 :𝐵𝑚}j
the hypotheses are split between the variable context a1:𝐴1 , . . . , a𝑛 :𝐴𝑛
on the left of `, and the abstraction {𝑥1:𝐵1} · · · {𝑥𝑚 :𝐵𝑚} on the right.
The former lists the global hypotheses that interact with other judge-
ments, and the latter the hypotheses that are local to the judgement.
In our experience such a separation is quite useful, because it explic-
itly marks the part of the context that is abstracted when a variable-
binding symbol is applied to its arguments.

The context is split into three parts:
metacontext, variable context and ab-
straction. When deriving judgements
we can pass between the contexts us-
ing promotion from Proposition 4.3.6
and Proposition 4.3.7.A (hypothetical) boundary is formed in the same fashion, as

Θ;Γ ` B.

We read it as asserting that B is a well-typed boundary in the con-
text Θ;Γ.

3.4. Instantiations

Let us spell out how how to instantiate metavariables with arguments.
An instantiation of a metacontext Ξ = [M1:B1 , . . . ,M𝑛 :B𝑛] over a con-
text Θ;Γ is a list representing a map

〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉,
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where 𝑒𝑖 ’s are arguments over Θ;Γ such that ar(B𝑖) = ar(𝑒𝑖). We some-
times write 𝐼 ∈ Inst(Ξ,Θ, Γ) when 𝐼 is such an instantiation.

For 𝑘 ≤ 𝑛, define the restriction

𝐼(𝑘) = 〈M1 ↦→𝑒1 , . . . ,M𝑘−1 ↦→𝑒𝑘−1〉.
We sometimes write 𝐼(M) to indicate the initial segment up to the
given metavariable M ∈ |𝐼 |. We use the same notation for initial seg-
ments of sequences in general, e.g., if ®𝑥 = (𝑥1 , . . . , 𝑥𝑛) then ®𝑥(𝑘) =
(𝑥1 , . . . , 𝑥𝑘−1).
An instantiation 𝐼 acts on an expression 𝑒 to give an expression 𝐼∗𝑒
by:

𝐼∗a = a, 𝐼∗𝑥 = 𝑥, 𝐼∗★ = ★,

𝐼∗({𝑥}𝑒) = {𝑥}(𝐼∗𝑒), 𝐼∗(M𝑖(®𝑡)) = 𝑒[𝐼∗®𝑡/®𝑥] where 𝐼(M) = { ®𝑥}𝑒 ,
𝐼∗(S(®𝑒′)) = S(𝐼∗®𝑒′),

The action on abstracted judgements is given by

𝐼∗(𝐴 type) = (𝐼∗𝐴 type),
𝐼∗(𝑡 : 𝐴) = (𝐼∗𝑡 : 𝐼∗𝐴),

𝐼∗(𝐴 ≡ 𝐵 by ★) = (𝐼∗𝐴 ≡ 𝐼∗𝐵 by ★),
𝐼∗(𝑠 ≡ 𝑡 : 𝐴 by ★) = (𝐼∗𝑠 ≡ 𝐼∗𝑡 : 𝐼∗𝐴 by ★),

𝐼∗({𝑥:𝐴} J) = ({𝑥:𝐼∗𝐴} 𝐼∗J).
An abstracted boundary may be instantiated analogously.

We can just imagine that 𝐼∗□ = □ and in-
stantiate boundaries similarly to judge-
ments.

Given 𝐼 of Ξ over Θ;Γ, and Δ = [𝑥1:𝐴1 , . . . , 𝑥𝑛 :𝐴𝑛] over Θ such that
|Γ| ∩ |Δ| = ∅, we define Γ, 𝐼∗Δ to be the variable context

Γ, 𝑥1:𝐼∗𝐴1 , . . . , 𝑥𝑛 :𝐼∗𝐴𝑛

Note that 𝐼∗Δ by itself is not a valid variable context. A judgement
Ξ;Δ ` Jmay be instantiated to Θ;Γ, 𝐼∗Δ ` 𝐼∗J. A hypothetical bound-
ary can be instantiated analogously.



1: Sometimes we still use the traditional
fraction-like presentation for clarity.

Type Theories 4.
4.1. Deductive systems

We first recall the general notion of a deductive system. A (finitary) clo-
sure rule on a carrier set 𝑆 is a pair ([𝑝1 , . . . , 𝑝𝑛], 𝑞)where 𝑝1 , . . . , 𝑝𝑛 , 𝑞 ∈
𝑆. The elements 𝑝1 , . . . , 𝑝𝑛 are the premises and 𝑞 is the conclusion
of the rule. A rule may be displayed as

𝑝1 · · · 𝑝𝑛

𝑞
.

A deductive system on a set 𝑆 is a family 𝐶 of closure rules on 𝑆. We
say that 𝑇 ⊆ 𝑆 is deductively closed for 𝐶 when the following holds:
for every rule 𝐶𝑖 = ([𝑝1 , . . . , 𝑝𝑛], 𝑞), if {𝑝1 , . . . , 𝑝𝑛} ⊆ 𝑇 then 𝑞 ∈ 𝑇 .
A derivation with conclusion 𝑞 ∈ 𝑆 is a well-founded tree whose
root is labeled by an index 𝑖 of a closure rule 𝐶𝑖 = ([𝑝1 , . . . , 𝑝𝑛], 𝑞),
and whose subtrees are derivations with conclusions 𝑝1 , . . . , 𝑝𝑛 . We
say that 𝑞 ∈ 𝑆 is derivable if there exists a derivation with conclu-
sion 𝑞. The derivable elements of 𝑆 form precisely the least deduc-
tively closed subset.

All deductive systems that we shall consider will have as their carriers
the set of hypothetical judgements and boundaries, as described in
Section 3.3.

4.2. Raw rules

An inference rule in type theory is a template that generates a fam-
ily of closure rules constituting a deductive system. In our setting, a
raw rule is a hypothetical judgement of the form Θ; [] ` j, which we
display1 as

Θ =⇒ j.

It is an object rule when j is an object judgement, and an equality
rule when j is an equality judgement. The designation “raw” signals
that, even though a raw rule is syntactically sensible, it may be quite
unreasonable from a type-theoretic point of view.

Given a raw rule 𝑅 = (M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ b 𝑒 ) and an instantiation
𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉 of its premises over Θ;Γ, the rule instanti-
ation 𝐼∗𝑅 is the closure rule ([𝑝1 , . . . , 𝑝𝑛 , 𝑞], 𝑟) where 𝑝𝑖 is

Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖 ,

𝑞 is Θ;Γ ` 𝐼∗b, and 𝑟 is Θ;Γ ` 𝐼∗(b 𝑒 ). In this way a raw rule generates
a family of closure rules, indexed by instantiations. The premise 𝑞
is needed only in various meta-theoretic inductive arguments, as it
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ensures the well-formedness of the boundary of the conclusion. In
practice, we use the “economic” variant ([𝑝1 , . . . , 𝑝𝑛], 𝑟), which is eas-
ily seen to be admissible once Theorem 5.1.6 is established.

Example 4.2.1 Wemay translate traditional ways of presenting rules
to raw rules easily. For example, consider the formation rule for
dependent products, which might be written as

Γ ` 𝐴 type Γ, 𝑥:𝐴 ` 𝐵 type

Γ ` Π(𝐴, {𝑥}𝐵) type
To be quite precise, the above is a family of closure rules, indexed
by meta-level parameters Γ, 𝐴, and 𝐵 ranging over suitable syntac-
tic entities. The template which generates such a family might be
written as

` A type 𝑥:A ` B(𝑥) type
` Π(A, {𝑥}B(𝑥)) type

Indeed, there is no need to mention Γ because it is always present,
and we have replaced the parameters 𝐴 and 𝐵 with metavariables
A and B (notice the change of fonts) to obtain bona-fide syntactic
expressions. Next, observe that the premises amount to specifying
an abstracted boundary for each metavariable, which brings us to

A:(□ type) B:({𝑥:A} □ type)
Π(A, {𝑥}B(𝑥)) type

By writing everything in a single line we obtain a raw rule

A:(□ type), B:({𝑥:A} □ type) =⇒ Π(A, {𝑥}B(𝑥)) type.
The original family of closure rules is recovered when the above
raw rule is instantiated with 〈A ↦→𝐴, B↦→{𝑥}𝐵〉 where 𝐴 and 𝐵 are
type expressions over (a metacontext and) a variable context Γ.

The raw rules act as templates for clo-
sure rules, so they have empty context.
Once we instantiate a raw rule, we get
the context Γ.

We next define congruence and metavariable rules. These feature in
every type theory.

Definition 4.2.2 The congruence rules associated with a raw object
rule 𝑅

M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ b 𝑒

are closure rules, with

𝐼 = 〈M1 ↦→ 𝑓1 , . . . ,M𝑛 ↦→ 𝑓𝑛〉 and 𝐽 = 〈M1 ↦→𝑔1 , . . . ,M𝑛 ↦→𝑔𝑛〉,
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of the form

Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑓𝑖 for 𝑖 = 1, . . . , 𝑛

Θ;Γ ` (𝐽(𝑖)∗B𝑖) 𝑔𝑖 for 𝑖 = 1, . . . , 𝑛

Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑓𝑖 ≡ 𝑔𝑖 for object boundary B𝑖

Θ;Γ ` 𝐼∗𝐵 ≡ 𝐽∗𝐵 if b = (□ : 𝐵)
Θ;Γ ` (𝐼∗b) 𝐼∗𝑒 ≡ 𝐽∗𝑒

The last premise applies only if we have
a rule for a term judgement rather than
a type judgement.

Metavariables have their own formation and congruence rules, akin
to specific and congruence rules.

Definition 4.2.3 Given a context Θ;Γ over Σ with

Θ = [M1:B1 , . . . ,M𝑛 :B𝑛],
and B𝑘 = ({𝑥1:𝐴1} · · · {𝑥𝑚 :𝐴𝑚} b), the metavariable rules for M𝑘

are the closure rules of the form

Θ;Γ ` 𝑡 𝑗 : 𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ` b[®𝑡/®𝑥]
Θ;Γ ` (b[®𝑡/®𝑥])M𝑘(®𝑡)

where ®𝑥 = (𝑥1 , . . . , 𝑥𝑚) and ®𝑡 = (𝑡1 , . . . , 𝑡𝑚). Furthermore, if b is an
object boundary, then the metavariable congruence rules for M𝑘

are the closure rules of the form

Θ;Γ ` 𝑠 𝑗 : 𝐴 𝑗[®𝑠(𝑗)/®𝑥(𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ` 𝑡 𝑗 : 𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ` 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐴 𝑗[®𝑠(𝑗)/®𝑥(𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ` 𝐶[®𝑠/®𝑥] ≡ 𝐶[®𝑡/®𝑥] if b = (□ : 𝐶)
Θ;Γ ` (b[®𝑠/®𝑥])M𝑘(®𝑠) ≡ M𝑘(®𝑡)

where ®𝑠 = (𝑠1 , . . . , 𝑠𝑚) and ®𝑡 = (𝑡1 , . . . , 𝑡𝑚).

Recall that in the conclusion of
the metavariable rule the notation
(b[®𝑡/®𝑥])M𝑘 (®𝑡) acually means (b[®𝑡/®𝑥])★
if b is an equational boundary.

The congruence rules for metavariables
are repeated in Figure 4.1 in order to
have all the structural rules gathered in
the same place.

In a finitary type theory (Definition 4.4.3) presuppositions may be
elided safely from the above rules to yield the following admissible
“economic” versions:

Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑓𝑖 for equation boundary B𝑖

Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑓𝑖 ≡ 𝑔𝑖 for object boundary B𝑖

Θ;Γ ` (𝐼∗b) 𝐼∗𝑒 ≡ 𝐽∗𝑒

TT-META-EC
Θ;Γ ` 𝑡 𝑗 : 𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ` (b[®𝑡/®𝑥])M𝑘(®𝑡)
TT-META-CONGR-EC
Θ;Γ ` 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐴 𝑗[®𝑠(𝑗)/®𝑥(𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ` (b[®𝑠/®𝑥])M𝑘(®𝑠) ≡ M𝑘(®𝑡)
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TT-VAR
a ∈ |Γ|

Θ;Γ ` a : Γ(a)

TT-META
Θ(M𝑘) = {𝑥1:𝐴1} · · · {𝑥𝑚 :𝐴𝑚} b

Θ;Γ ` 𝑡 𝑗 : 𝐴𝑗[®𝑡(𝑗)/®𝑥(𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ` b[®𝑡/®𝑥]
Θ;Γ ` (b[®𝑡/®𝑥])M𝑘(®𝑡)

TT-META-CONGR
Θ(M𝑘) = {𝑥1:𝐴1} · · · {𝑥𝑚 :𝐴𝑚} b

Θ;Γ ` 𝑠 𝑗 : 𝐴𝑗[®𝑠(𝑗)/®𝑥(𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ` 𝑡 𝑗 : 𝐴𝑗[®𝑡(𝑗)/®𝑥(𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ` 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐴𝑗[®𝑠(𝑗)/®𝑥(𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ` 𝐶[®𝑠/®𝑥] ≡ 𝐶[®𝑡/®𝑥] if b = (□ : 𝐶)
Θ;Γ ` (b[®𝑠/®𝑥])M𝑘(®𝑠) ≡ M𝑘(®𝑡)

TT-ABSTR
Θ;Γ ` 𝐴 type a ∉ |Γ| Θ;Γ, a:𝐴 ` J[a/𝑥]

Θ;Γ ` {𝑥:𝐴} J Figure 4.1.: Variable, metavariable and
abstraction closure rules.

4.3. Raw type theories

A type theory in its basic form is a collection of rules that generate a
deductive system. While this is too permissive a notion from a type-
theoretic standpoint, it is nevertheless useful enough to deserve a
name.

Definition 4.3.1 A raw type theory Tover a signature Σ is a family
of raw rules over Σ, called the specific rules of T. The associated
deductive system of T consists of:

1. the structural rules over Σ:
a) the variable, metavariable, and abstraction rules (Defi-

nition 4.2.3, Figure 4.1),
b) the equality rules, (Figure 4.2),
c) the boundary rules (Figure 4.3);

2. the instantiations of the specific rules of T;
3. for each specific object rule of T, the instantiations of the

associated congruence rule (Definition 4.2.2).

The rules of a raw type theory do not impose any conditions on the
metacontexts and variable contexts, although they only ever extend
variable contexts with well-formed types. When awell-formedmetavari-
able or variable context extension is needed, the auxiliary rules in Fig-
ure 4.4 are employed. We call a judgement strongly derivable, when
also its metacontext and context are well-formed.

The notion of storngly derivable judge-
ments is especially used in Chapter 10,
where we can only elaborate strongly
derivable judgements.

Definition 4.3.2 A judgement Θ;Γ ` J is strongly derivable, if it is
derivable and ` Θ mctx and Θ ` Γ vctx are also derivable.
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TT-TY-REFL
Θ;Γ ` 𝐴 type

Θ;Γ ` 𝐴 ≡ 𝐴

TT-TY-SYM
Θ;Γ ` 𝐴 ≡ 𝐵

Θ;Γ ` 𝐵 ≡ 𝐴

TT-TY-TRAN
Θ;Γ ` 𝐴 ≡ 𝐵 Θ;Γ ` 𝐵 ≡ 𝐶

Θ;Γ ` 𝐴 ≡ 𝐶

TT-TM-REFL
Θ;Γ ` 𝑡 : 𝐴

Θ;Γ ` 𝑡 ≡ 𝑡 : 𝐴

TT-TM-SYM
Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴
Θ;Γ ` 𝑡 ≡ 𝑠 : 𝐴

TT-TM-TRAN
Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴 Θ;Γ ` 𝑡 ≡ 𝑢 : 𝐴

Θ;Γ ` 𝑠 ≡ 𝑢 : 𝐴

TT-CONV-TM
Θ;Γ ` 𝑡 : 𝐴 Θ;Γ ` 𝐴 ≡ 𝐵

Θ;Γ ` 𝑡 : 𝐵
TT-CONV-EQ
Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴 Θ;Γ ` 𝐴 ≡ 𝐵

Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐵
Figure 4.2.: Equality closure rules.

TT-BDRY-TY

Θ;Γ ` □ type

TT-BDRY-TM
Θ;Γ ` 𝐴 type

Θ;Γ ` □ : 𝐴

TT-BDRY-EQTY
Θ;Γ ` 𝐴 type Θ;Γ ` 𝐵 type

Θ;Γ ` 𝐴 ≡ 𝐵 by □

TT-BDRY-EQTM
Θ;Γ ` 𝐴 type Θ;Γ ` 𝑠 : 𝐴 Θ;Γ ` 𝑡 : 𝐴

Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴 by □

TT-BDRY-ABSTR
Θ;Γ ` 𝐴 type a ∉ |Γ| Θ;Γ, a:𝐴 ` B[a/𝑥]

Θ;Γ ` {𝑥:𝐴} B Figure 4.3.: Well-formed abstracted
boundaries.

With the notion of raw type theory in hand, we may define concepts
that employ derivability.

Definition 4.3.3 An instantiation 𝐼 = 〈𝑀1 ↦→𝑒1 , . . . , 𝑀𝑛 ↦→𝑒𝑛〉 of a
metacontext Ξ = [𝑀1:B1 , . . . , 𝑀𝑛 :B𝑛] over Θ;Γ is derivable when
Θ;Γ ` (𝐼(𝑘)∗B𝑘) 𝑒𝑘 for 𝑘 = 1, . . . , 𝑛.

Definition 4.3.4 Instantiations

𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉 and 𝐽 = 〈M1 ↦→ 𝑓1 , . . . ,M𝑛 ↦→ 𝑓𝑛〉
over Θ and Γ are judgementally equal when, for 𝑘 = 1, . . . , 𝑛, if B𝑘

is an object boundary then Θ;Γ ` (𝐼(𝑘)∗B𝑘) 𝑒𝑘 ≡ 𝑓𝑘 .

Definition 4.3.5 A raw rule Ξ =⇒ j is derivable when it is derivable
qua judgement. It is admissible when, for every derivable instanti-
ation 𝐼 = 〈𝑀1 ↦→𝑒1 , . . . , 𝑀𝑛 ↦→𝑒𝑛〉 of Ξ over Θ;Γ we have Θ;Γ ` 𝐼∗j.

A derivation of a judgement is called a generic derivation of a rule
if it is just a rule of the type theory (instantiated with the identity
instantiation).

If 𝐼 is an instantiation of Ξ = [M1:B1 , . . . ,M𝑚 :B𝑚] over Θ and Δ, and
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MCTX-EMPTY

` [] mctx

MCTX-EXTEND
` Θ mctx Θ; [] ` B M ∉ |Θ |

` 〈Θ,M:B〉 mctx

VCTX-EMPTY
` Θ mctx

Θ ` [] vctx

VCTX-EXTEND
Θ ` Γ vctx Θ, Γ ` 𝐴 type a ∉ |Γ|

Θ ` 〈Γ, a:𝐴〉 vctx Figure 4.4.: Well-formed metacontexts
and variable context extensions.

𝐽 is an instantiation of Θ over Ψ;Γ such that |Γ| ∩ |Δ| = ∅, their com-
position 𝐽 ◦ 𝐼 is the instantiation of Ξ over Ψ;Γ, 𝐽∗Δ defined by

(𝐽 ◦ 𝐼)(M) = 𝐽∗(𝐼(M)).
Composition of instantiations is associative. It also preserves deriv-
ability, which can be proved easily once Theorem 5.1.4 is established.

It will be useful to know that derivability only needs to be checked
for instantiations over the empty variable context. For this purpose,
define the promotion of

Θ;Γ ` J

to be the judgement
(Θ, Γ); [] ` J,

in which the free variables are promoted to metavariables.

We could obfuscate what we just said by
being more precise: if

Γ = [a1:𝐴1 , . . . , a𝑛 :𝐴𝑛],
the promotion is the judgement

(Θ, a′1:𝐴′
1 , . . . , a

′
𝑛 :𝐴′

𝑛); [] ` J[®a′/®a]
in which a′1 , . . . , a

′
𝑛 are fresh metavari-

ables and 𝐴′
𝑖 = 𝐴𝑖[ ®a′(𝑖)/®a(𝑖)].

Note that
` (Θ, Γ) mctx is derivable if, and only if, both ` Θ mctx and Θ ` Γ vctx
are derivable.

Proposition 4.3.6 A raw type theory derives Θ;Γ ` J if, and only if,
it derives the promotion (Θ, Γ); [] ` J.

Proof. To pass between the original variable context and its promo-
tion, swap applications of TT-VAR with corresponding applications of
TT-META.

Another useful way of promoting variables is promoting the abstracted
variables to the context. Let

Θ;Γ ` {𝑥1:𝐴1} · · · {𝑥𝑛 :𝐴𝑛}j
be an abstracted judgement. Its abstraction promotion is the judge-
ment

Θ; (Γ, a1:𝐴1 , . . . , a𝑛 :𝐴𝑛) ` j[a1/𝑥1 , . . . , a𝑛/𝑥𝑛]
given that a1 , . . . , a𝑛 ∉ |Γ|.

Proposition 4.3.7 A raw type theory strongly derives

Θ;Γ ` {𝑥1:𝐴1} · · · {𝑥𝑛 :𝐴𝑛}j
if, and only if, it strongly derives the abstraction promotion

Θ; (Γ, a1:𝐴1 , . . . , a𝑛 :𝐴𝑛) ` j[a1/𝑥1 , . . . , a𝑛/𝑥𝑛]
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Proof. To prove the equivalence we prove both directions. First sup-
pose

Θ;Γ ` {𝑥1:𝐴1} · · · {𝑥𝑛 :𝐴𝑛}j
is strongly derivable. We proceed by induction on the derivation. In
the base case the two judgements are identical. By inversion the
derivation ends with TT-ABSTR:

Θ;Γ ` 𝐴1 type a1 ∉ |Γ|
Θ;Γ, a1:𝐴1 ` ({𝑥2:𝐴2} · · · {𝑥𝑛 :𝐴𝑛}j)[a1/𝑥1]

Θ;Γ ` {𝑥1:𝐴1} · · · {𝑥𝑛 :𝐴𝑛}j

Using VCTX-EXTEND on the first premise (and the derivation of Γ being
well-formed that is given by strong derivability), we obtain a deriva-
tion that (Γ, a1:𝐴1) is also a well-formed context. We can now use
induction hypothesis on the third premise to get the desired deriva-
tion.

For the other way round, suppose

Θ; (Γ, a1:𝐴1 , . . . , a𝑛 :𝐴𝑛) ` j[a1/𝑥1 , . . . , a𝑛/𝑥𝑛] (4.1)

is strongly derivable. We proceed by induction on the derivation that
(Γ, a1:𝐴1 , . . . , a𝑛 :𝐴𝑛) is a well-formed context. The derivation ends
with VCTX-EXTEND

Θ ` 〈Γ, a1:𝐴1 , . . . , a𝑛−1:𝐴𝑛−1〉 vctx
Θ, Γ, a1:𝐴1 , . . . , a𝑛−1:𝐴𝑛−1 ` 𝐴𝑛 type

a𝑛 ∉ |Γ, a1:𝐴1 , . . . , a𝑛−1:𝐴𝑛−1 |
Θ ` 〈Γ, a1:𝐴1 , . . . , a𝑛 :𝐴𝑛〉 vctx

We can use TT-ABSTR on the second premise and (4.1). We then induc-
tively proceed with the first premise, to get the desired result.

Sometimes we need to speak of a sub-theory of a type theory T: a
type theory over the same signature ΣT where we only take some of
the specific rules. Formally we say that a fragment of a type theory T

as a family of specific rules indexed by the set I is a type theory Tfr

given the restriction T↾Ifr of the family T to a subset of the index set
Ifr ⊆ I. The derivations in the fragment are implicitly embedded in the
entire type theory.

4.4. Finitary and standard type theories

Raw rules do not impose any well-typedness conditions on the premises
and the conclusion. We may rectify this by requiring that their bound-
aries be derivable. To make this precise we recall well-founded or-
ders.

Definition 4.4.1 A well-founded order on a set 𝐼 is an irreflexive
transitive relation ⊏ for which the following holds: for every subset
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𝐴 ⊆ 𝐼

(∀𝑖 ∈ 𝐼.(∀𝑗 ⊏ 𝑖. 𝑗 ∈ 𝐴) =⇒ 𝑖 ∈ 𝐴)
=⇒ 𝐴 = 𝐼.

We read the condition in the definition
of a well-founded order as an induction
principle: to show that ∀𝑥 ∈ 𝐼.Φ(𝑥) we
need to show for any 𝑖 ∈ 𝐼 that Φ(𝑖)
holds if we assume Φ(𝑦) for all 𝑦 ⊏ 𝑖.

Classically, the condition for well-founded orders is equivalent to the
fact that the order contains no countable infinite descending chains.
However, the formulation we use gives the inductive principle we use
later on. We will also need the following lemma about chains of well-
founded orders.

Lemma 4.4.2 Let (𝐴𝑛 ,⊏𝑛)𝑛∈ℕ be well-founded orders such that for
every 𝑛 ∈ ℕ, it holds that 𝐴𝑛 ⊆ 𝐴𝑛+1, the order ⊏𝑛 is included in
⊏𝑛+1 and ⊏𝑛 is an initial segment of ⊏𝑛+1, i.e.

∀𝑥, 𝑦 ∈ 𝐴𝑛+1. (𝑥 ⊏𝑛+1 𝑦 ∧ 𝑦 ∈ 𝐴𝑛) =⇒ 𝑥 ⊏𝑛 𝑦.

Then 𝐴∞ = ∪𝑛∈ℕ𝐴𝑛 ordered by ⊏ with

∀𝑥, 𝑦 ∈ 𝐴∞. 𝑥 ⊏ 𝑦 ⇔ ∃𝑛 ∈ ℕ. 𝑥, 𝑦 ∈ 𝐴𝑛 ∧ 𝑥 ⊏𝑛 𝑦
is also a well-founded order.

Proof. In Appendix Chapter B.

We can now finally give the definition of finitary type theories.

Definition 4.4.3 A raw rule Θ =⇒ b 𝑒 is a finitary rule with respect
to a raw type theory Twhen ` Θ mctx and Θ; [] ` b are derivable. A
finitary type theory is a raw type theory T= (𝑇𝑖)𝑖∈I for which there
exists a well-founded order (I,⊏) such that each 𝑇𝑖 is finitary with
respect to the fragment (𝑇𝑗)𝑗⊏𝑖 .

We use the well-founded order on the rules in the above definition
to avoid possible circularities, otherwise the justification that a rule
is finitary may rely on the rule itself, see [22] [22]: Bauer et al. (2020), A general

definition of dependent type theories
for further details.

Example 4.4.4 A finitary type theory is well behaved in many re-
spects, but may still be “non-standard”. Assuming N, O and S are
respectively a type constant, a term constant, and a unary term
symbol, the rules

[] =⇒ N type, [] =⇒ O : N, n:(□ : N) =⇒ S(S(n)) : N
constitute a finitary type theory. However, the third rule is trouble-
some because it posits a compound term S(S(n)).

We avoid such anomalies by requiring that object rules only ever in-
troduce generically applied symbols. For this purpose, define a rule-
boundary to be a hypothetical boundary of the form Θ; [] ` b, no-
tated as Θ =⇒ b. The elements of Θ are the premises and b is the
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conclusion boundary. We say that the rule-boundary is an object rule-
boundary when b is a type or a term boundary, and an equality rule-
boundary when b is an equality boundary. Next, given an object rule-
boundary

M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ b,

its associated symbol arity is (𝑐, [ar(B1), . . . , ar(B𝑛)]), where 𝑐 ∈ {Ty, Tm}
is the syntactic class of b. Given a fresh symbol S, we assign it the as-
sociated arity and define the associated symbol rule to be

M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ b[S(M̂𝑖 , . . . , M̂𝑛)],
where M̂𝑖 is the generic application of the metavariable M𝑖 , defined
as, assuming ar(B𝑖) = (𝑐𝑖 , 𝑛𝑖):

1. 𝑀̂𝑖 = {𝑥1 , . . . , 𝑥𝑛𝑖 }M𝑖(𝑥1 , . . . , 𝑥𝑛𝑖 ) when 𝑐𝑖 ∈ {Ty, Tm},
2. 𝑀̂𝑖 = {𝑥1 , . . . , 𝑥𝑛𝑖 }★ when 𝑐𝑖 ∈ {EqTy, EqTm}.

Here then is our final notion of type theory.

Definition 4.4.5 A finitary type theory is standard if its specific ob-
ject rules are symbol rules, and each symbol has precisely one as-
sociated rule. We can also build a standard type the-

ory iteratively, starting with the empty
fragment (over the empty signautre)
and then adding symbols with symbol
rules, and equality rules.

The examples of type theories listed at the beginning of Chapter 3 are
all standard type theories. A typical example of a finitary type theory
that is not also standard is the simply typed 𝜆-calculus, where the
domain and codomain of functions are not explicitly annotated.



1: Excluding substitution rules from the
definition of a type theory has an-
toher importatnt benefit: it saves us
from proving substitution lemmas for
every meta-theroem we state, as Theo-
rem 5.1.3 proves them once and forall.

Meta-theorems 5.
We recall from [69] [69]: Haselwarter et al. (2021), Finitary

type theories with and without contexts
meta-theorems that establish desirable structural

properties of type theories. The theorems are rather expected thus
verifying that our definition of a type theory is sensible. We only in-
clude the statements of the theorems, the reader can consult [69] [69]: Haselwarter et al. (2021), Finitary

type theories with and without contextsfor the proofs. In the next section we prove several additional meta-
theorems that we rely on subsequently in the Part ‘An equality check-
ing algorithm’.

5.1. Meta-theorems about raw type theories

First we have meta-theorems about raw type theories that are con-
cerned with syntactic manipulations. We start with derivability of re-
namings.

A renaming of an expression 𝑒 is
an injective map 𝜌 with domain
mv(𝑒) ∪ fv(𝑒) that takes metavari-
ables tometavariables and free vari-
ables to free variables.

Proposition 5.1.1 (Renaming) If a raw type theory derives a judge-
ment or a boundary, then it also derives its renaming.

Once derivability of a judgement is established, additional hypothesis
do not break it. This materializes in ability to weaken metacontexts
and variable contexts.

Proposition 5.1.2 (Weakening) For a raw type theory:

1. If Θ;Γ1 , Γ2 ` J then Θ;Γ1 , a:𝐴, Γ2 ` J.
2. If Θ1 ,Θ2;Γ ` J then Θ1 ,M:B,Θ2;Γ ` J.

An analogous statement holds for boundaries.

It is understood that in the above statements, and the subsequent
ones, we tacitly assume whatever syntactic conditions are needed
to ensure that all entities are well-formed. For example, in Proposi-
tion 5.1.2 we require a ∉ |Γ1 , Γ2 | and that 𝐴 be a syntactically valid
type expression for Θ;Γ1.

A well-trained eye surely notices that there are no substitution rules
in Chapter 3. That is because substitution rules are admissible as
shown in the following theorem. 1

Theorem 5.1.3 (Admissibility of substitution) In a raw type theory
the substitution rules from Figure 5.1 are admissible.

While substitutions substitute variables for expressions, instantiations
substitutemetavariables. Furthermore, instantiations of specific rules
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TT-SUBST
Θ;Γ ` {𝑥:𝐴} J Θ;Γ ` 𝑡 : 𝐴

Θ;Γ ` J[𝑡/𝑥]

TT-BDRY-SUBST
Θ;Γ ` {𝑥:𝐴} B Θ;Γ ` 𝑡 : 𝐴

Θ;Γ ` B[𝑡/𝑥]
TT-SUBST-EQTY

Θ;Γ ` {𝑥:𝐴}{ ®𝑦:®𝐵} 𝐶 type
Θ;Γ ` 𝑠 : 𝐴 Θ;Γ ` 𝑡 : 𝐴 Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴

Θ;Γ ` { ®𝑦:®𝐵[𝑠/𝑥]} 𝐶[𝑠/𝑥] ≡ 𝐶[𝑡/𝑥]
TT-SUBST-EQTM

Θ;Γ ` {𝑥:𝐴}{ ®𝑦:®𝐵} 𝑢 : 𝐶
Θ;Γ ` 𝑠 : 𝐴 Θ;Γ ` 𝑡 : 𝐴 Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴
Θ;Γ ` { ®𝑦:®𝐵[𝑠/𝑥]} 𝑢[𝑠/𝑥] ≡ 𝑢[𝑡/𝑥] : 𝐶[𝑠/𝑥]

TT-CONV-ABSTR
Θ;Γ ` {𝑥:𝐴} J Θ;Γ ` 𝐵 type Θ;Γ ` 𝐴 ≡ 𝐵

Θ;Γ ` {𝑥:𝐵} J Figure 5.1.: Admissible substitution
rules.

give us closure rules for our type theory. If we instantiate any meta-
context with derivable expressions, i.e. if instantiation is derivable,
then derivability of the judgement is preserved.

Theorem 5.1.4 (Admissibility of instantiations) In a raw type theory,
let 𝐼 be a derivable instantiation of Ξ over Θ;Δ. If Ξ;Γ ` J is deriv-
able and |Δ| ∩ |Γ| = ∅ then Θ;Δ, 𝐼∗Γ ` 𝐼∗J is derivable, and similarly
for boundaries.

Another important structural property of instantiations is that instan-
tiating by judgementally equal instantiations induces judgemental
equality. We make this precise in the following theorem.

Theorem 5.1.5 In a raw type theory, let 𝐼 and 𝐽 be judgementally
equal derivable instantiations of Ξ over Θ;Γ. Suppose Ξ ` Δ vctx
and |Γ| ∩ |Δ| = ∅. If Ξ;Δ ` B𝑒 is a derivable object judgement then
Θ;Γ, 𝐼∗Δ ` (𝐼∗B) 𝐼∗𝑒 ≡ 𝐽∗𝑒 is derivable. The condition |Γ| ∩ |Δ| = ∅ is inessential,

as we can always apply a renaming to
ensure it holds.

If a judgement is derivable, so are its presuppositions. In the lan-
guage of raw type theories this materializes in the boundary being
well-formed.

Theorem5.1.6 (Presuppositivity) If a raw type theory derives ` Θ mctx,
Θ ` Γ vctx, and Θ;Γ ` B𝑒 then it derives Θ;Γ ` B.

Note that for presuppositions to hold
we need to have a strongly derivable
judgement. This is not surprising, as
if the context is not well formed, we
could derive some ill-formed presuppo-
sitions.

5.2. Meta-theorems about standard type
theories

The next two theorems apply to standard type theories. The first one
provides an inversion principle, and the second one guarantees that
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a term has at most one type, up to judgemental equality. Both rely on
a candidate type that may be read off directly from the term.

Definition 5.2.1 Let T be a standard type theory. The natural type
𝜏Θ;Γ(𝑡) of a term expression 𝑡 with respect to a context Θ;Γ is de-
fined by:

𝜏Θ;Γ(a) = Γ(𝑎),
𝜏Θ;Γ(M(𝑡1 , . . . , 𝑡𝑚)) = 𝐴[𝑡1/𝑥1 , . . . , 𝑡𝑚/𝑥𝑚]

where Θ(M) = ({𝑥1:𝐴1} · · · {𝑥𝑚 :𝐴𝑚} □ : 𝐴)
𝜏Θ;Γ(S(𝑒1 , . . . , 𝑒𝑛)) = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉∗𝐵

where the symbol rule for S is

M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ S(M̂1 , . . . , M̂𝑛) : 𝐵.

The following theorem is an inversion principle that recovers the “stump”
of a derivation of a derivable object judgement.

Theorem 5.2.2 (Inversion theorem) If a standard finitary type theory
derives a term judgement then it does so by a derivation which
concludes with precisely one of the following rules:

1. the variable rule TT-VAR,
2. the metavariable rule TT-META,
3. an instantiation of a symbol rule,
4. the abstraction rule TT-ABSTR,
5. the term conversion rule TT-CONV-TM of the form

Θ;Γ ` 𝑡 : 𝜏Θ;Γ(𝑡) Θ;Γ ` 𝜏Θ;Γ(𝑡) ≡ 𝐴

Θ;Γ ` 𝑡 : 𝐴
where 𝜏Θ;Γ(𝑡) ≠ 𝐴.

Since inversion is a principle that applies to more than just the term
judgements in the sense of Theorem 5.2.2, we use the word “inversion”
to mean the general principle and explicitly refer to the inversion
theorem when we apply it in our proofs.

Finally, in a standard type theory a term has at most one type, up to
judgemental equality.

Theorem 5.2.3 (Uniqueness of typing) For a standard finitary type
theory:

1. If Θ;Γ ` 𝑡 : 𝐴 and Θ;Γ ` 𝑡 : 𝐵 then Θ;Γ ` 𝐴 ≡ 𝐵.
2. If Θ; [] ` Γ vctx and Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴 and Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐵 then

Θ;Γ ` 𝐴 ≡ 𝐵.
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5.3. More meta-theorems

We state and prove several furthermeta-theorems usedmostly in Part ‘An
equality checking algorithm’. We include the proofs as the theorems
were developped for the equality checking algorithm and they are
mostly not included in [69]

[69]: Haselwarter et al. (2021), Finitary
type theories with and without contexts

, but they are part of [24] [24]: Bauer et al. (2021), An extensible
equality checking algorithm for depen-
dent type theories

.

We start by the instantiation of a natural type.

Proposition 5.3.1 Let Tbe a standard type theory and 𝐼 an instan-
tiation of Ξ over Θ;Γ. For a term expression S(®𝑒) it holds that

𝐼∗(𝜏Ξ;Δ(S(®𝑒))) = 𝜏Θ;Γ,𝐼∗Δ(𝐼∗S(®𝑒)).

Proof. Let M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ S(M̂1 , . . . , M̂𝑛) : 𝐵 be the symbol rule
for S. By unfolding the definition of the natural type we have

𝐼∗(𝜏Ξ;Δ(S(®𝑒))) = 𝐼∗(〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉∗𝐵) = 〈M1 ↦→𝐼∗𝑒1 , . . . ,M𝑛 ↦→𝐼∗𝑒𝑛〉∗𝐵
= 𝜏Θ;Γ,𝐼∗Δ(S(𝐼∗®𝑒)) = 𝜏Θ;Γ,𝐼∗Δ(𝐼∗(S(®𝑒)))

Note that 𝐼 acts purely syntactically and needs not be derivable for
the equation to hold. It is also worth pointing out that the equation
does not hold for metavariable term expressions.

We now explicate two common usages of Theorem 5.2.2.

Corollary 5.3.2 In a standard type theory, suppose the rule for S is

M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ b′S(M̂1 , . . . , M̂𝑛) .

If the theory derives Θ;Γ ` bS(®𝑒) then it derives Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖
for all 𝑖 = 1, . . . , 𝑛, where 𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉.

Proof. By Theorem 5.2.2 the judgement is derived by an application
of the symbol rule for S, possibly followed by a conversion, whose
premises are precisely the judgements of interest.

Corollary 5.3.3 If a standard type theory derives Θ;Γ ` 𝑡 : 𝐴 then it
also derives Θ;Γ ` 𝑡 : 𝜏Θ;Γ(𝑡).

Proof. By Theorem 5.2.2, either 𝐴 = 𝜏Θ,Γ(𝑡) and there is nothing to
prove, or the derivations ends with

Θ;Γ ` 𝑡 : 𝜏Θ;Γ(𝑡) Θ;Γ ` 𝜏Θ;Γ(𝑡) ≡ 𝐴

Θ;Γ ` 𝑡 : 𝐴
which contains the desired equality as a subderivation.
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We next prove a statement about instantiations that needs a couple
of preparatory lemmas.

Lemma 5.3.4 If a raw type theory derives Θ ` Γ vctx and Θ;Γ `
B𝑒 ≡ 𝑒′ then it derives Θ;Γ ` B𝑒′ .

Proof. We proceed by induction on the number of abstractions in the
object boundary B.

Case B = (□ type), 𝑒 = 𝐴 and 𝑒′ = 𝐵: Theorem 5.1.6 applied to the
assumption Θ;Γ ` 𝐴 ≡ 𝐵 by ★ gives Θ;Γ ` 𝐴 ≡ 𝐵 by □, from which
Θ;Γ ` 𝐵 type follows by inversion.

Case B= (□ : 𝐴): Similar to the previous case.

CaseB= ({𝑥:𝐴} B′): Inversion on the assumptionΘ;Γ ` {𝑥:𝐴} B′ 𝑒 ≡ 𝑒′
gives

Θ;Γ ` 𝐴 type and Θ;Γ, a:𝐴 ` (B′[a/𝑥]) 𝑒[a/𝑥] ≡ 𝑒′[a/𝑥] .
By induction hypothesis, the second judgement entails

Θ;Γ, a:𝐴 ` (B′[a/𝑥]) 𝑒′[a/𝑥] ,
which we may abstract to the desired form.

Lemma 5.3.5 In a raw type theory, consider judgementally equal
derivable instantiations 𝐼 and 𝐽 of Ξ over Θ;Γ, and suppose Ξ `
Δ vctx and Ξ;Δ ` B such that |Δ| ∩ |Γ| = ∅. If Θ;Γ, 𝐼∗Δ ` (𝐼∗B) 𝑒 is
derivable then so is Θ;Γ, 𝐼∗Δ ` (𝐽∗B) 𝑒 .

Proof. We proceed by structural induction on the derivation of Ξ;Δ `
B.

Case TT-BDRY-TY: Trivial because 𝐼∗B= (□ type) = 𝐽∗B.

Case TT-BDRY-TM: If the derivation ends with

Ξ;Δ ` 𝐴 type

Ξ;Δ ` □ : 𝐴

then Θ;Γ, 𝐼∗Δ ` 𝐼∗𝐴 ≡ 𝐽∗𝐴 by Theorem 5.1.5 applied to the premise,
hence we may convert Θ;Γ, 𝐼∗Δ ` 𝑒 : 𝐼∗𝐴 to Θ;Γ, 𝐼∗Δ ` 𝑒 : 𝐽∗𝐴.
Case TT-BDRY-EQTY: If the derivation ends with

Ξ;Δ ` 𝐴 type Ξ;Δ ` 𝐵 type

Ξ;Δ ` 𝐴 ≡ 𝐵 by □

then Theorem 5.1.5 applied to the premises gives us

Θ;Γ, 𝐼∗Δ ` 𝐼∗𝐴 ≡ 𝐽∗𝐴 and Θ;Γ, 𝐼∗Δ ` 𝐼∗𝐵 ≡ 𝐽∗𝐵.
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2: Both 𝑒 and 𝑒′ are equal to ★.

Together with the assumption Θ;Γ, 𝐼∗Δ ` 𝐼∗𝐴 ≡ 𝐼∗𝐵, these suffice to
derive Θ;Γ, 𝐼∗Δ ` 𝐽∗𝐴 ≡ 𝐽∗𝐵.

Case TT-BDRY-EQTM: similar to TT-BDRY-EQTY.

Case TT-BDRY-ABSTR: Suppose 𝑒 = {𝑥}𝑒′ and the derivation ends with

Ξ;Δ ` 𝐴 type a ∉ |Δ| Ξ;Δ, a:𝐴 ` B′[a/𝑥]
Ξ;Δ ` {𝑥:𝐴} B′

where we may assume a ∉ |Γ| without loss of generality. Theorem 5.1.5
applied to the first premise derives

Θ;Γ, 𝐼∗Δ ` 𝐼∗𝐴 ≡ 𝐽∗𝐴. (5.1)

By inverting the assumption Θ;Γ, 𝐼∗Δ ` {𝑥:𝐼∗𝐴} (𝐼∗B′) 𝑒 , and possibly
renaming a free variable to a, we obtain

Θ;Γ, 𝐼∗Δ ` 𝐼∗𝐴 type and Θ;Γ, 𝐼∗Δ, a:𝐼∗𝐴 ` ((𝐼∗B′) 𝑒 )[a/𝑥].
Then the induction hypothesis for the second premise yields

Θ;Γ, 𝐼∗Δ, a:𝐼∗𝐴 ` ((𝐽∗B′) 𝑒 )[a/𝑥],
which we may abstract to Θ;Γ, 𝐼∗Δ ` {𝑥:𝐼∗𝐴} (𝐽∗B′) 𝑒 and apply TT-
CONV-ABSTR to convert it to the desired judgement

Θ;Γ, 𝐼∗Δ ` {𝑥:𝐽∗𝐴} (𝐽∗B′) 𝑒 .
The premise Θ;Γ, 𝐼∗Δ ` 𝐽∗𝐴 type is derived by Theorem 5.1.6 from (5.1).

Proposition 5.3.6 In a raw type theory, consider instantiations 𝐼 and
𝐽 of Ξ over Θ;Γ, such that ` Ξ mctx and Θ ` Γ vctx. If 𝐼 is derivable
and 𝐼 and 𝐽 are judgementally equal then 𝐽 is derivable.

Proof. We prove the claim by induction on the length of Ξ. The base
case is trivial. For the induction step we assume the statement, and
show that is still holds when we extend Ξ, 𝐼 and 𝐽 by one more entry.
Specifically, assume that

Ξ; [] ` B, and Θ;Γ ` (𝐼∗B) 𝑒 , (5.2)

and if B is an object boundary also that

Θ;Γ ` (𝐼∗B) 𝑒 ≡ 𝑒′ . (5.3)

Then we must demonstrate Θ;Γ ` (𝐽∗B) 𝑒′ .
If B is an equality boundary then applying Lemma 5.3.5 to (5.2) gives
Θ;Γ ` (𝐽∗B) 𝑒 , and we are done because 𝑒 and 𝑒′ are the same2.

If B is an object boundary then applying Lemma 5.3.5 to Ξ; [] ` B

and (5.3) gives Θ;Γ ` (𝐽∗B) 𝑒 ≡ 𝑒′ . The derivability of Θ;Γ ` (𝐽∗B) 𝑒′
now follows from Lemma 5.3.4.
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Overview 6.
Setting oneself to develop a formal proof, one has to face a dilemma
of which proof assistant to use. Even amongst proof assistants based
on type theories there are several options [2, 5, 43, 45, 58, 78, 108, 133,
141, 146] [45]: (2021), The Coq proof assistant,

version 2021.02.2
[5]: (2021), The Agda proof assistant
[108]: Moura et al. (2015), “The Lean
Theorem Prover (System Description)”
[133]: Sozeau et al. (2019), “Coq Coq
correct! Verification of Type Checking
and Erasure for Coq, in Coq”
[58]: Gilbert et al. (2019), “Definitional
proof-irrelevance without K”
[2]: Abel et al. (2017), “Decidability of
Conversion for Type Theory in Type
Theory”
[146]: Vezzosi et al. (2019), “Cubical Agda:
A Dependently Typed Programming
Language with Univalence and Higher
Inductive Types”
[141]: The RedPRL Development Team
(2020), The ‘redtt’ theorem prover.
[43]: Cohen et al. (2018), The ‘cubicaltt’
theorem prover.
[78]: Isaev (2021), Arend Standard Library

. The choice can depend on various factors such as one’s pre-
vious experience with a proof assistant, the nature of the problem to
be formalised, expressivity of the underlying type theory, availability
of the necessary libraries, performance of a proof assistant etc. Once
the choice is made and the formalization begins it is usually not easy
to change one’s mind and continue the formalization in another proof
assistant, as all the proof development has to be manually translated
to the new type-theoretic foundation, if such a translation is even
possible.

A step towards analyzing compatibility of formalizations is studying
compatibility of the underlying type theories. Often a proof relies on
only a fragment of the type-theoretic foundation and when such a
fragment is common to another type theory, the translation could be
made. Studying translations of formal systems is an age-old tale with
far too many contributions to cover in this thesis. In Section 11.1 we
summarize some key points relevant to our work.

In Part ‘Transformations of type theories’ we propose mathematical
definitions of transformations of type theories, prove some basicmeta-
theoretical properties and exhibit their use on a few examples, the
particularly substantial one being the elaboration from Chapter 10.

To accommodate for the use in proof assistants, the transformations
should be syntactic in nature and general enough to be applicable
to a class of type theories. We aim to adhere to the following stipula-
tions:

1. We work in the fully general setting of raw type theories (Defi-
nition 4.3.1).

2. Transformations are syntactic in nature, so they are pertinent
to possible implementations in proof assistants.

3. Preservation of derivability is inherent to transformations of
type theories.

4. We can exhibit some interesting and useful examples.

Addressing the issue of translating syntax of type theories immedi-
ately stumbles upon the question of what stage the translation is
performed on. Do we transform terms, types, judgements or deriva-
tions?

A trivial definition of a transformation 𝑓 : T→ Uwould be a map be-
tween derivations of type theories Tand U, without additional con-
straints. Such a map certainly adheres to (3) and covers (too) many
examples, but is not usable in practice: in order to specify a trans-
formation, one has to provide a derivation in the target theory U for
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every derivation of T. If the transformation does not preserve addi-
tional structure, this is an impossible and rather useless task.

Instead, we propose three notions of transformations of type theories.
First is the syntactic transformation that operates purely syntactically
and is specified by mapping symbols from the signature of the source
theory to expressions in the target theory. Syntactic transformations
preserve some of the syntactic structure, such as variable shapes,
judgement forms and syntactic classes of expressions. To organize
the expected properties of syntactic transformations, we describe
the concept of relative monads for syntax in Chapter 7 and in Sec-
tion 8.3 show that syntactic transformations are indeed an instance
of such relative monad. The syntactic transformations and their rela-
tion to substitutions and instantiations were also formalized by An-
drej Bauer [19] [19]: Bauer (2021), Syntax of dependent

type theories
.

We upgrade syntactic transformations to type-theoretic transforma-
tions to accommodate for (3). With (4) in mind we show that the
propositions as types translation [48, 49, 74, 149] [149]: Wadler (2015), “Propositions as

Types”
[48]: Curry (1934), “Functionality in
Combinatory Logic”
[49]: Curry et al. (1958), Combinatory
logic. Vol. I
[74]: Howard (1980), “The Formulae-as-
Types Notion of Construction”

is an example of type-
theoretic transformation (Example 9.3.1, Chapter A). We also prove
enough meta-theoretic properties of type-theoretic transformations
to show that a definitional extension of a type theory (Example 9.3.5)
is conservative.

A major use case for our notion of type-theoretic transformations
is elaboration. Proof assistants often allow the users to omit some
typing information which can be automatically reconstructed by an
elaborator. In Chapter 10 we precisely define what is an elaboration of
a finitary type theory and prove the elaboration theorem stating that
every finitary type theory can be elaborated. We also inspect some
algorithmic properties of elaboration in Section 10.3.

The definition of elaboration gives rise to the third notion of a trans-
formation of type theories, an elaborationmap. Unlike a type-theroetic
transformation which is given by a map on symbols and specific rules,
an elaboration map takes as input derivations of (strongly derivable)
judgements and yields the elaborated judgements, while still preserv-
ing derivability and thus adhering to (3).

6.1. Contributions

The main two contributions are defining a notion of type-theoretic
transformation and proving the elaboration theorem (Theorem 10.2.1).
All constructions and proofs are carried out in a constructive fash-
ion.

To build towards a definition of type-theoretic transformation, we

▶ describe a general schema of relative monads for syntax (Sec-
tion 7.1),

▶ define a notion of a symbol renaming (Definition 8.1.1),
▶ define syntactic transformations (Definition 8.2.1) and prove that

they form a relative monad over the category of signatures (Sec-
tion 8.3),
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▶ define type-theoretic transformations (Definition 9.1.2) and prove
that they preserve derivability (Theorem 9.1.3),

▶ prove some meta-theoretic properties of judgementally equal
transformations (Proposition 9.1.6, Corollary 9.1.10),

▶ define a category of type theories and type-theoretic transfor-
mations and show that it has an initial object (Proposition 9.2.2)
and coporoducts (Proposition 9.2.3),

▶ exhibit that propositions as types is an example of a type-theoretic
transformation (Example 9.3.1, Chapter A) and

▶ using meta-theoretic properties of type-theoretic transforma-
tions prove that definitional extension is conservative (Exam-
ple 9.3.5).

We give a mathematically precise definition of an elaboration (Defini-
tion 10.1.3) and prove that elaboration has a universal property (Theo-
rem 10.1.7). We state and prove the elaboration theorem (Theorem 10.2.1,
Subsection 10.2.1, Subsection 10.2.2). To analyze algorithmic properties
of elaboration we

▶ define the elaborator, an algorithm for elaboration (Definition 10.3.2),
▶ relate decidable checking with decidable equality checking in a

standard type theory (Proposition 10.3.5),
▶ relate computable elaboration with decidable checking (Theo-

rem 10.3.9) and
▶ relate (equality) checking of a finitary type theory with (equality)

checking of its elaboration (Theorem 10.3.10, Corollary 10.3.11).



Relative monads 7.
Before we dig into defining transformations of type theories, we recall
the categorical notion of relative monad [8] [8]: Altenkirch et al. (2015), “Monads

need not be endofunctors”
. The syntactic transforma-

tions in Chapter 8 can be neatly organized as a relative monad over
the category of signatures. This gives us the categorical structure we
expect: we get the Kleisli category over the relative monad. In order
to be able to express transformations in this sense, we first remind
ourselves of the definition of relative monad and then express the
syntax of finitary type theories in those terms.

Definition 7.0.1 Let 𝕁 and ℂ be categories. A relative monad on a
functor 𝐽 : 𝕁 → ℂ is given by:

▶ an object mapping 𝑇 : |𝕁| → |ℂ|,
▶ for any 𝑋 ∈ |𝕁| a map 𝜂𝑋 ∈ ℂ(𝐽 𝑋, 𝑇 𝑋) (the unit),
▶ for any 𝑋,𝑌 ∈ |𝕁| and 𝑓 ∈ ℂ(𝐽 𝑋, 𝑇 𝑌), a map 𝑓 † ∈ ℂ(𝑇 𝑋, 𝑇 𝑌)

(the Kleisli extension)

such that the following conditions hold:

1. for any 𝑋,𝑌 ∈ |𝕁| and 𝑓 ∈ ℂ(𝐽 𝑋, 𝑇 𝑌) it holds that 𝑓 †◦𝜂𝑋 = 𝑓 ,
2. for any 𝑋 ∈ |𝕁| it holds that 𝜂†𝑋 = id𝑇𝑋 ,
3. for any 𝑋,𝑌, 𝑍 ∈ |𝕁|, 𝑓 ∈ ℂ(𝐽 𝑋, 𝑇 𝑌) and 𝑔 ∈ ℂ(𝐽 𝑌, 𝑇 𝑍) it

holds that (𝑔† ◦ 𝑓 )† = 𝑔† ◦ 𝑓 †.

We think of the functor 𝐽 as a sort of em-
bedding of 𝕁 into ℂ.

For the relation to the monads and
more examples please consult [8]

.

We think of the functor 𝐽 as a sort of embedding of 𝕁 into ℂ. The
relative monad laws are then quite natural:

1. For the first law we can draw the commutative diagram

𝑇 𝑋 𝑇 𝑌

𝐽 𝑋

𝑓 †

𝜂𝑋

𝑓

2. For the second law:

𝑇 𝑋 𝑇 𝑋

𝐽 𝑋 𝑇 𝑋

𝜂†𝑋=id𝑇𝑋

𝜂𝑋

Lifting the unit gives us the identity.
3. For the third equation:
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𝐽 𝑇 𝑇 𝑌 𝑇 𝑍

𝐽 𝑋 𝑇 𝑌 𝑇 𝑍

𝐽 𝑌 𝑇 𝑍

𝑓 † 𝑔†

𝑓 𝑔†

𝑔

From the top row of the diagram we get the composition of lifts
𝑔† ◦ 𝑓 †. However we can also lift the second row to get (𝑔† ◦ 𝑓 )†
and the second law makes sure we get the same map.

The following proposition is stated in [8] [8]: Altenkirch et al. (2015), “Monads
need not be endofunctors”

, but for completeness we
include the proof as well.

Proposition 7.0.2 Let 𝑇 be a relative monad on a functor 𝐽 : 𝕁 → ℂ.
The condition for the relative monad further ensure that:

1. 𝑇 : 𝕁 → ℂ is functorial:𝑇maps 𝑓 ∈ 𝕁(𝑋,𝑌) to𝑇 𝑓 ∈ ℂ(𝑇 𝑋, 𝑇 𝑌)
defined by 𝑇 𝑓 = (𝜂𝑌 ◦ 𝐽 𝑓 )†,

2. 𝜂 is natural,
3. (−)† is natural.

Proof. To verify, that 𝑇 is functorial we check functor laws:

▶ The identity law: We need to verify that 𝑇 id𝑋 = id𝑇𝑋 . Compute

𝑇 id𝑋 = (𝜂𝑋 ◦ 𝐽 id)† = (𝜂𝑋 ◦ id𝐽𝑋)† = 𝜂†𝑋 = id𝑋

Where the last equation holds by the second equation for rela-
tive monads.

▶ The composition law: let 𝑋,𝑌, 𝑍 ∈ 𝕁 and 𝑓 ∈ 𝕁(𝑋,𝑌) and 𝑔 ∈
𝕁(𝑌, 𝑍). We want to show 𝑇 𝑔 ◦𝑇 𝑓 = 𝑇 (𝑔 ◦ 𝑓 ), which computes
to

(𝜂𝑍 ◦ (𝐽 𝑔))† ◦ (𝜂𝑌 ◦ (𝐽 𝑓 ))† = (𝜂𝑍 ◦ (𝐽 (𝑔 ◦ 𝑓 )))†. (7.1)

We can draw the following diagram:

𝐽 𝑋 𝐽 𝑌 𝐽 𝑍

𝑇 𝑋 𝑇 𝑌 𝑇 𝑍

𝐽 𝑓

𝜂𝑋

𝐽 𝑔

𝜂𝑌 𝜂𝑍

(𝜂𝑌◦𝐽 𝑓 )† (𝜂𝑍◦𝐽 𝑔)†

The diagram clearly commutes due to the third equation of rel-
ative monads. We can now compute (𝜂𝑍 ◦ 𝐽 𝑔)†◦(𝜂𝑌 ◦ 𝐽 𝑓 )†, which
by the third law for relative monads equals

(𝜂𝑍 ◦ 𝐽 𝑔)† ◦ (𝜂𝑌 ◦ 𝐽 𝑓 )† = ((𝜂𝑍 ◦ 𝐽 𝑔)† ◦ (𝜂𝑌 ◦ 𝐽 𝑓 ))†.
We can now apply associativity of composition and the first law
of relative monads to get

((𝜂𝑍 ◦ 𝐽 𝑔)† ◦ (𝜂𝑌 ◦ 𝐽 𝑓 ))† = (𝜂𝑍 ◦ 𝐽 𝑔 ◦ 𝐽 𝑓 )†
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which by functoriality of 𝐽 gives us

((𝜂𝑍 ◦ 𝐽 𝑔)† ◦ (𝜂𝑌 ◦ 𝐽 𝑓 ))† = (𝜂𝑍 ◦ 𝐽 (𝑔 ◦ 𝑓 ))†.
By transitivity we get the desired equation.

Now we can check that 𝜂 is indeed natural transformation. Let 𝑋,𝑌 ∈
𝕁 and 𝑓 ∈ 𝕁(𝑋,𝑌). We need to check that the following diagram com-
mutes:

𝑇 𝑋 𝑇 𝑌

𝐽 𝑋 𝐽 𝑌

(𝜂𝑌◦𝐽 𝑓 )†

𝜂𝑋

𝐽 𝑓

𝜂𝑌

The equation
(𝜂𝑌 ◦ 𝐽 𝑓 )† ◦ 𝜂𝑋 = 𝜂𝑌 ◦ 𝐽 𝑓

holds by applying the first law for relative monads to the morphism
𝜂𝑌 ◦ 𝐽 𝑓 .
To check that the Kleisli extension (−)† is functorial, let 𝑋,𝑌 ∈ 𝕁 and
𝑘 ∈ ℂ(𝐽 𝑋, 𝑇 𝑌). The diagram

𝑇 𝑋 𝑇 𝑌

𝐽 𝑋 𝑇 𝑌

𝑘†

𝜂𝑋

𝑘

id𝑇 𝑌

commutes by the first law for relative monads.

7.1. Relative monads for syntax

Since we would like to study the relative monad of syntactic expres-
sions, we take a look at a special form of monads that covers our
examples. These relative monads for syntax (for the case of substitu-
tions and instantiations) were studied and formalized by Gaïa Loutch-
mia, Jure Taslak, Danel Ahman and Andrej Bauer [93]

[93]: Loutchmia et al. (2021), Formaliza-
tion of simple type theory

.

We take substitution as the motivating example. The substitution is
usually a map 𝜎 : 𝛾 → 𝛿, where 𝛾 determines variables and 𝛿 deter-
mines expressions. Just like metacontexts can be re-

duced to metavariable shapes, vari-
able contexts Γ can be reduced to
variable shapes of the form 𝛾 = |Γ|.

But we also have other parameters, like informa-
tion about sorts, arities of variables, etc. We form two categories:

▶ ℂ for the category of objects that change. In the case of sub-
stitution that would be objects like 𝛾 and 𝛿, and renaming of
variables as morphisms,

▶ 𝔻 for the rest of the parameters.
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Together 𝛾 ∈ |ℂ| and 𝜗 ∈ |𝔻| should suffice to determine a free
algebra of expressions Expr(𝛾, 𝜗). We then formulate a functor

𝐽 : ℂ → Set𝔻

That maps 𝛾 to a functor, which for 𝜗 ∈ 𝔻 gives us the set of variables
in 𝛾 adhering to restrictions of 𝜗. The relative monad over 𝐽 is then

𝑇 : ℂ → Set𝔻

𝛾 ↦→ (𝜗 ↦→ Expr(𝛾, 𝜗))
The functorial action of 𝑇 tells how renamings act on expressions.

For every 𝛾 ∈ ℂ the unit 𝜂 of the relative monad 𝑇 is a natural trans-
formation

𝜂𝛾 : 𝐽 𝛾 → 𝑇 𝛾

between functors from𝔻 → Set. For every 𝜗 ∈ 𝔻we get amorphism

𝜂𝜗𝛾 : 𝐽 𝛾 𝜗 → 𝑇 𝛾 𝜗

that maps a name 𝑥 to an expression 𝑥. In the case of substitution
this would map a variable name to the variable of that name as a
syntactic expression. The Kleisli extension then captures the action of
substitution: for a substitution 𝜎 : 𝐽 𝛾 → 𝑇 𝛿, the lifting 𝜎† : 𝑇 𝛾 → 𝑇 𝛿
is the action of 𝜎 on expressions.

We now have the general idea, what is the shape of relative monads
for syntax. To give concrete examples that arise from the syntax of
type theory, we first need to specify the following categories:

▶ Class = {Ty, Tm, EqTy, EqTm} is the discrete category of syntactic
classes.

▶ VShape is the category of variable shapes with variable renam-
ings. The category has coproducts (for variable context exten-
sion).

▶ MShape is the category of metavariable shapes and renamings.
Recall that a metavariable renam-
ing

𝑟 : 𝜗 → 𝛯

maps a metavariable M of 𝜗 to a
metavariable in 𝛯 so that

ar(𝑟(M)) = ar(M)

▶ Sig is the category of signatures. The objects are lists of the
form [S1:𝛼1 , . . . , S𝑛 :𝛼𝑛], where 𝛼𝑖 is the arity of symbol S𝑖 . The
morphisms are symbol renamings (Definition 8.1.1).

A symbol renaming is a map be-
tween signatures 𝑓 : Σ1 → Σ2 that
preserves arities of symbols: for ev-
ery S ∈ Σ1 it holds that

ar(S) = ar( 𝑓 (S)).

We then have a functor

Expr : Sig × Class ×MShape × VShape → Set
Expr (Σ, c, 𝜗, 𝛾) = ExprΣ(c, 𝜗; 𝛾)

that gives the set of syntactic expressions. For readability we shall
use notation ExprΣ(c, 𝜗; 𝛾) for the functor as well. It’s easy to see this
really is a functor: since Class is a discrete category a morphism in
the product category Sig × Class × MShape × VShape is a quadruple
(𝑟𝑠 , idc , 𝑟𝑚 , 𝑟𝑣), where 𝑟𝑠 , 𝑟𝑚 and 𝑟𝑣 are renamings of symbols, metavari-
ables and variables respectively. Since renamings preserve arities,
the action of the functor on morphism (𝑟𝑠 , idc , 𝑟𝑚 , 𝑟𝑣) is just a func-
tion between sets of expressions ExprΣ1(c, 𝜗1; 𝛾1) → ExprΣ2(c, 𝜗2; 𝛾2)
that acts by renaming according to 𝑟𝑠 , 𝑟𝑚 and 𝑟𝑣 .
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By varying the choice for the categoriesℂ and𝔻 we can now build the
relative monads for the syntactic structures we are interested in.

7.2. The relative monad of substitutions

For the relative monad of substitutions take ℂ = VShape and 𝔻 =
Sig × Class ×MShape. We define the functor 𝐽 as

𝐽 : VShape → SetSig×Class×MShape

𝐽 𝛾 (Σ, c, 𝜗) =
{
{𝑥 | 𝑥 ∈ |𝛾 |} if c = Tm

∅ otherwise

so it produces the set of all variables in the given variable context
(if we are looking at the correct class Tm). The functorial action on
the variable renamings (the morphisms ofVShape) gives the action of
those renamings on sets of variables. The relative monad 𝑇 is defined
by

𝑇 : VShape → SetSig×Class×MShape

𝑇 𝛾 (Σ, c, 𝜗) = ExprΣ(c, 𝜗; 𝛾)
For 𝛾 ∈ |VShape| the unit 𝜂𝛾 is given by

𝜂𝛾 : 𝐽 𝛾 → 𝑇 𝛾

𝜂𝛾 (Σ, c, 𝜗) = 𝑥 ↦→ 𝑥

Since 𝐽 𝛾 and 𝑇 𝛾 are elements of SetSig×Class×MShape, the unit is a
natural transformation between these two functors, so a function be-
tween sets 𝐽 𝛾 (Σ, c, 𝜗) and 𝑇 𝛾 (Σ, c, 𝜗). If c ≠ Tm the set 𝐽 𝛾 (Σ, c, 𝜗)
is empty, therefore we get the empty map. Otherwise the unit is the
function from {𝑥 | 𝑥 ∈ |𝛾 |} to ExprΣ(c, 𝜗; 𝛾) that takes a variable name
and makes the variable expression of that name.

The Kleisli extension for a substitution 𝜎 : 𝐽 𝛾 → 𝑇 𝛿 is given by the
action of substitution on expressions:

𝜎† : 𝑇 𝛾 → 𝑇 𝛿

𝜎† (Σ, c, 𝜗) : ExprΣ(c, 𝜗; 𝛾) → ExprΣ(c, 𝜗; 𝛿)
𝜎† (Σ, c, 𝜗) 𝑒 = 𝜎∗𝑒

We will not show the conditions that this is indeed relative monad.
Instead this has been formalized by Loutchmia, Taslak, Ahman and
Bauer [93] [93]: Loutchmia et al. (2021), Formaliza-

tion of simple type theory
.

7.3. The relative monad of instantiations

There are many similarities between substitutions and instantiations.
While substitutions replace variables with expressions, instantiations
replace metavariables. They both act on expressions in a similar way.
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We can also promote variables to metavariables according to Proposi-
tion 4.3.6 and then use instantiations instead of substitutions. We get
the relative monad of instantiations similarly to the relative monad
of substitutions, we just now have to pay attention to the arities of
metavariables.

For the category ℂ we take MShape and for 𝔻 = Sig×Class×VShape.
The functor 𝐽 is given by

𝐽 : MShape → SetSig×Class×VShape

𝐽 𝜗 (Σ, c, 𝛾) = {M | M : (c, 𝛾) ∈ 𝜗}
The relative monad 𝑇 is again the monad of expressions:

𝑇 : MShape → SetSig×Class×VShape

𝑇 𝜗 (Σ, c, 𝛾) = ExprΣ(c, 𝜗; 𝛾)
The unit embeds metavariables in expression as their generic appli-
cations,

𝜂𝜗 : 𝐽 𝜗 → 𝑇 𝜗

𝜂𝜗 (Σ, c, 𝛾) : 𝐽 𝜗 (Σ, c, 𝛾) → 𝑇 𝜗 (Σ, c, 𝛾)
𝜂𝜗 (Σ, c, 𝛾) M = M̂

and the Kleisli extension for an instantiation 𝐼 : 𝐽 𝜗 → 𝑇 𝛹 is the
action of instantiation:

𝐼† : 𝑇 𝜗 → 𝑇 𝛹

𝐼† (Σ, c, 𝛾) : 𝑇 𝜗 (Σ, c, 𝛾) → 𝑇 𝛹 (Σ, c, 𝛾)
𝐼† (Σ, c, 𝛾) 𝑒 = 𝐼∗𝑒

The relative monad for instantiations has also been formalized by
Loutchmia, Taslak, Ahman and Bauer [93] [93]: Loutchmia et al. (2021), Formaliza-

tion of simple type theory
.



Syntactic transformations 8.
When considering transformations between type theories there are
several options. We can map symbols to symbols, symbols to expres-
sions or even judgements to other kinds of judgements as for exam-
ple in [152] [152]: Winterhalter et al. (2019), “Elimi-

nating Reflection from Type Theory”
. We will not consider much the later kind, but will give a

few observations in Section 9.3 and Chapter 11.

8.1. Symbol renamings

We first consider transformations of the syntax. Following the exam-
ple for variables and metavariables for which we have renamings, we
can also rename symbols.

Definition 8.1.1 A symbol renaming is a map between signatures
𝑓 : Σ1 → Σ2 that preserves arities of symbols: for every S ∈ Σ1 it
holds that

ar(S) = ar( 𝑓 (S)).

The composition 𝑔 ◦ 𝑓 of symbol renamings 𝑓 : Σ1 → Σ2 and 𝑔 : Σ2 →
Σ2 as maps is again a symbol renaming, because the arities are pre-
served by both 𝑓 and 𝑔. The composition is obviously associative and
we have the identity symbol renaming that is just the identity map.
This makes Sig into a category of signatures.

Example 8.1.2 When we think of renamings, we usually see them
as maps that justify our perceptions that the names of variables,
metavariables or symbols are not important. For example, it does
not matter what we call the type of natural numbers, as long as it
has the correct rules. We can easily think of two signatures, like

Σ1 =[ℕ : (Ty, []),
z : (Tm, []),
s : (Tm, [(Tm, 0)])]

Σ2 =[Nat : (Ty, []),
zero : (Tm, []),
succ : (Tm, [(Tm, 0)])]

While specifying the arities, the natural
numbers are used to denote the shapes
of variables instead of VShape. Since
the variables are bound, the represen-
tations are equivalent.

which both represent natural numbers. The symbol renaming

Σ1 → Σ2

ℕ ↦→ Nat
z ↦→ zero
s ↦→ succ
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exhibits the correspondence between the two signatures. Since this
is a syntactic transformation between signatures, we are not yet
concerned with the rules and derivations – we have not even given
the rules that govern these symbols. However, in reasonable cases
the rules given for the two signatures will also correspond to each
other nicely, after all we are expecting to see two representations
of natural numbers.

Since the symbol renaming is defined on the level of syntax, we are
not dealing with the question of derivability yet. However, for that rea-
son we can get some somewhat less intuitive examples of renamings
that one does not encounter in practice.

Example 8.1.3 Suppose we have the following signatures:

Σ1 =[Π : (Ty, [(Ty, 0), (Ty, 1)]),
ℕ : (Ty, []),
zero : (Tm, []),
succ : (Tm, [(Tm, 0)])]

Σ2 =[Σ : (Ty, [(Ty, 0), (Ty, 1)]),
ℤ : (Ty, []),
zero : (Tm, []),
succ : (Tm, [(Tm, 0)])
pred : (Tm, [(Tm, 0)])]

Σ1 is the signature withΠ-types (dependent product types) and the
type of natural numbers ℕ with zero for zero and succ for successor.
Σ2 is the signature with Σ-types (dependent sum types) and the
type of integers ℤ with zero for zero, succ for successor and pred for
predecessor. We can form the symbol renaming

Σ1 → Σ2

Π ↦→ Σ

ℕ ↦→ ℤ

zero ↦→ zero
succ ↦→ succ

that exploits the fact that Π and Σ have the same arities, and simi-
larly for ℕ and ℤ. Note that in practice the signature Σ1 would also
contain symbols like λ of arity (Tm, [(Ty, 0), (Ty, 1), (Tm, 1)]) and app
with arity (Tm, [(Ty, 0), (Ty, 1), (Tm, 0), (Tm, 0)]), while Σ2 would be ex-
tended by pair with arity (Tm, [(Ty, 0), (Ty, 0), (Tm, 0), (Tm, 0)]) and the
projections fst and snd of arity (Tm, [(Ty, 0), (Ty, 1), (Tm, 0)]). Since the
arities of these additional symbols do not match, we cannot extend
the given symbol renaming.

Symbol renamings are a first definition of a syntactic transformation
of type theories, but it is a very restrictive one. Since the arities need
to be preserved, the useful renamings are namely the ones that pre-
serve the entire structure and just take care of different names for
the same symbols.
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8.2. Syntactic transformation

If we again follow the example of variables and metavariables, the
notions of substitution and instantiation are the ones that are useful
in practice, because we can replace a (meta)variable with an arbitrary
expression. We can define a similar concept for signatures of symbols
as well, namely the syntactic transformations.

Definition 8.2.1 A syntactic transformation 𝑓 : Σ1 → Σ2 is a map
that takes a symbol S ∈ Σ1 to an expression in ExprΣ2(c, 𝜗; []), where
ar(S) = (c, 𝜗).

The metavariable shape 𝜗 arises from
the arity of the symbol S. Again if the
symbol arity determines bound vari-
ables using natural numbers, we can
get the metavariable shape that uses
VShape.

Sometimes we need to speak about the
metavariables from the arity of a sym-
bol. In those cases we can generate a
metavariable shape with metavariables
M1 , …, M𝑛 from the arity of the symbol.

With syntactic transformations we still preserve some of the structure.
Symbols are mapped into expressions of the same class and the arity
defines the metavariable shape of the expressions. Even though we
map into the empty variable shape (empty variable context), we can
always apply weakening to get the expression in the desired variable
context.

Example 8.2.2 A special example of a syntactic transformation is
the identity transformation idΣ : Σ → Σ, which maps every symbol
S to its generic application S(M̂1 , . . . , M̂𝑛).

Example 8.2.3 We can also think of symbol renamings as syntactic
transformations in the following sense: if 𝑓 : Σ1 → Σ2 is a symbol
renaming, then 𝑓 ′ : Σ1 → Σ2 with

𝑓 ′(S) = ( 𝑓 (S))(M̂1 , . . . , M̂𝑛)
where M1 , . . . ,M𝑛 are metavariables from the metavariable shape
of the arity of the symbol 𝑓 (S).

Example 8.2.4 Extending Example 8.1.3 suppose we have the two
signatures

Σ1 =[Π : (Ty, [(Ty, 0), (Ty, 1)]),
λ : (Tm, [(Ty, 0), (Ty, 1), (Tm, 1)])
app : (Tm, [(Ty, 0), (Ty, 1), (Tm, 0), (Tm, 0)])
ℕ : (Ty, []),
zero : (Tm, []),
succ : (Tm, [(Tm, 0)])]
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and

Σ2 =[Σ : (Ty, [(Ty, 0), (Ty, 1)]),
pair : (Tm, [(Ty, 0), (Ty, 1), (Tm, 0), (Tm, 0)]),
fst : (Tm, [(Ty, 0), (Ty, 1), (Tm, 0)]),
snd : (Tm, [(Ty, 0), (Ty, 1), (Tm, 0)]),
ℤ : (Ty, []),
zero : (Tm, []),
succ : (Tm, [(Tm, 0)])
pred : (Tm, [(Tm, 0)])]

Σ1 is the signature with Π-types (dependent product types) with λ

for forming dependent functions and app for function applications,
and with the type of natural numbers ℕ with zero for zero and succ
for successor. Σ2 is the signature with Σ-types (dependent sum
types) with the usual symbols pair, fst and snd for forming pairs and
projections and with the type of integers ℤ with zero for zero, succ
for successor and pred for predecessor. We can extend the symbol
renaming from Example 8.1.3 in the following way:

Σ1 → Σ2

Π ↦→ Σ(M1 , {𝑥}M2(𝑥))
λ ↦→ zero

app ↦→ pair(M1 , {𝑥}M2(𝑥),M4 ,M4)
ℕ ↦→ ℤ

zero ↦→ zero
succ ↦→ succ(M1)

where M1 , . . . ,M4 are metavariables from the appropriate metavari-
able shape of the symbol arity. This is a valid syntactic transforma-
tion, but a rather unusual one. We expect λ to be mapped into a
term expression of a Π-type, but instead it is mapped to (a weak-
ened) zero, which we expect to have type ℤ. Note that on the syn-
tactic level there are no typing rules and we have not given any
either. The syntactic transformation simply needs to respect syn-
tactic classes, arities and scoping, which in our case it does.

Preserving derivability is a desired con-
dition we use in the definiton of
type-theoretic transformations (Defini-
tion 9.1.2).

Other interesting examples of syntactic transformations can be found
in Section 9.3 as they are also type-theoretic transformations (Defini-
tion 9.1.2).

Every syntactic transformation acts on expressions in a natural way,
lifting it to a map between expressions over signatures of type theo-
ries.

Definition 8.2.5 The action of a syntactic transformation 𝑓 : Σ1 →
Σ2 is a map

𝑓∗ : ExprΣ1(c, 𝜗; 𝛾) → ExprΣ2(c, 𝜗; 𝛾)
for every syntactic class c, metavariable shape 𝜗 and variable shape
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𝛾 given by

𝑓∗a = a, 𝑓∗𝑥 = 𝑥, 𝑓∗★ = ★,

𝑓∗({𝑥}𝑒) = {𝑥}( 𝑓∗𝑒),
𝑓∗(M(𝑡1 , . . . , 𝑡𝑚)) = M( 𝑓∗𝑡1 , . . . , 𝑓∗𝑡𝑚)

𝑓∗(S(𝑒1 , . . . , 𝑒𝑛)) = 〈M1 ↦→ 𝑓∗𝑒1 , . . .M𝑛 ↦→ 𝑓∗𝑒𝑛〉∗ 𝑓 (S)
whereM1 , . . . ,M𝑛 are themetavariables from themetavariable shape
𝜗 in ar(S) = (cl(S), 𝜗).

The action of syntactic transformation
is similar to the action of substitutions
and instantiations, but now the symbols
are replaced instead of (meta)variables.

Definition 8.2.6 For syntactic transformations

𝑓 : Σ1 → Σ2

and
𝑔 : Σ2 → Σ3

the composition transformation 𝑔 ◦ 𝑓 : Σ1 → Σ3 is defined by

(𝑔 ◦ 𝑓 )(S) = 𝑔∗( 𝑓 S).

The composition is well-defined, because the action preserves the
metavariable shapes and variable shapes.

8.3. The relative monad of syntactic
transformations

Just like the substitutions and instantiations were examples of rela-
tive monads for syntax described in Section 7.1, the newly defined syn-
tactic transformations are as well. This yields many nice properties of
syntactic transformations and organizes them in a structured concept.
In the remainder of this section we explain how syntactic transfor-
mations form a relative monad and prove the necessary equations.
On the way to this result we encounter many nice and somewhat
expected lemmas about the interaction of syntactic transformations
with the rest of the syntax (instantiations, substitutions, etc.). Some
of these results were formalized by Andrej Bauer [19] [19]: Bauer (2021), Syntax of dependent

type theories
.

Following the schema from Section 7.1 we takeℂ = Sig and𝔻 = Class×
MShape × VShape. We define the functor 𝐽 as

𝐽 : Sig → SetClass×MShape×VShape (8.1)
𝐽 Σ (c, 𝜗, 𝛾) = {S | S : (c, 𝜗) appears in Σ}

The relative monad 𝑇 is defined by

𝑇 : Sig → SetClass×MShape×VShape

𝑇 Σ (c, 𝜗, 𝛾) = ExprΣ(c, 𝜗; 𝛾)
Just like the unit 𝜂 is the generic application of a metavariable in the
case of instantiations, with syntactic transformations 𝜂 is the generic
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application of the symbols.

𝜂Σ : 𝐽 Σ → 𝑇 Σ

𝜂Σ (c, [M1:(c1 , 𝛽1), . . . ,M𝑛 :(c𝑛 , 𝛽𝑛)], 𝛾) S = S(M̂1 , . . . , M̂𝑛)
This is precisely the identity syntactic transformation idΣ.

The unit 𝜂 is in our case a natural trans-
formation between functors 𝐽 and 𝑇 .

To define
the Kleisli extension, we take a syntactic transformation

𝑓 : 𝐽 Σ → 𝑇 Ω

𝑓(c,𝜗,𝛾) : S ↦→ 𝑓(c,𝜗,𝛾) S ∈ ExprΩ(c, 𝜗; 𝛾)
Syntactic transformation from defini-
tion Definition 8.2.1 maps to expressions
in the empty variable shape. However,
we implicitly weaken them into shape 𝛾
here.and lift it with the action

𝑓 † : 𝑇 Σ → 𝑇 Ω

𝑓 †(c,𝜗,𝛾) 𝑒 = 𝑓∗𝑒.

To verify that this structure is indeed a relative monad, we need to
check several facts that are gathered in the lemmas that follow. First,
we establish that 𝐽 from (8.1) is indeed a functor. Recall that Sig is a
category with signatures and symbol renamings. We have not defined
the action of 𝐽 on a renaming 𝑟 : Σ → Ω, but we take the obvious
candidate

𝐽 𝑟 : 𝐽 Σ → 𝐽 Ω

(𝐽 𝑟)(c,𝜗,𝛾) : {S | S : (c, 𝜗) ∈ Σ} → {S′ | S′ : (c, 𝜗) ∈ Ω}
(𝐽 𝑟)(c,𝜗,𝛾) S = 𝑟(S)

Since 𝐽 Σ and 𝐽 Ω are elements of func-
tor categories, 𝐽 𝑟 is a natural trans-
formation, so an arrow for each point
(c, 𝜗, 𝛾).

We check the functor conditions:

(𝐽 id)(c,𝜗,𝛾) S = id(S)
so indeed 𝐽 id = id. To get the equation for the composition

𝐽 (𝑚 ◦ 𝑟) = (𝐽 𝑚) ◦ (𝐽 𝑟)
we compute both sides:

(𝐽 (𝑚 ◦ 𝑟))(c,𝜗,𝛾) S = (𝑚 ◦ 𝑟)(S) = 𝑚(𝑟(S))
((𝐽 𝑚) ◦ (𝐽 𝑟))(c,𝜗,𝛾) S = (𝐽 𝑚)(c,𝜗,𝛾)(𝑟(S)) = 𝑚(𝑟(S))

and we get the same result. In the second case we used the definition
of the vertical composition of natural transformations.

Nowwe check the equations for the relativemonad fromDefinition 7.0.1.
For the first equation we need to check that for all signatures Σ,Ω ∈
Sig and for every syntactic transformation 𝑓 : 𝐽 Σ → 𝑇 Ω the following
diagram commutes.

𝐽 Σ 𝑇 Ω

𝑇 Σ

𝑓

𝜂Σ 𝑓 †
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We compute for (c, 𝜗, 𝛾) ∈ Class ×MShape × VShape and a symbol S
with arity ar(S) = (c, 𝜗), where 𝜗 = [M1:𝛽1 , . . . ,M𝑛 :𝛽𝑛]

( 𝑓 † ◦ 𝜂Σ)(c,𝜗,𝛾) S = 𝑓 †(c,𝜗,𝛾)(𝜂Σ (c, 𝜗, 𝛾) S)
= 𝑓 †(c,𝜗,𝛾)(S(M̂1 , . . . , M̂𝑛))
= 〈M1 ↦→ 𝑓 †(M̂1), . . . ,M𝑛 ↦→ 𝑓 †(M̂𝑛)〉∗ 𝑓 (S)
= 〈M1 ↦→M̂1 , . . . ,M𝑛 ↦→M̂𝑛〉∗ 𝑓 (S)
= 𝑓 (S)

Note that 𝑓 †(𝑀̂) = 𝑓 †({ ®𝑥}M(®𝑥)) =

{ ®𝑥}( 𝑓 †(M(®𝑥))) = { ®𝑥}M( 𝑓 †(®𝑥)) = M̂

The instantiation 〈M↦→M̂〉 is the identity
instantiation and that it acts trivially on
expressions. This is formalized in [19]

[19]: Bauer (2021), Syntax of dependent
type theories

.
Since the unit 𝜂Σ acts like the identity syntactic transformation, this
equation proves that the identity transformation is the right neutral
element for syntactic transformations.

For the second equation of a relative monad we need to prove that
for every signature Σ ∈ Sig it holds that

𝜂†Σ = id𝑇Σ

where the righthand side is the identity map on expressions. Since
the unit 𝜂 acts like the identity syntactic transformation we first need
the following lemma.

Lemma 8.3.1 Action preserves identity: the action of the identity
transformation idΣ : Σ → Σ is the identity function on expressions:
Let 𝑒 ∈ ExprΣ(c, 𝜗; 𝛾). Then

id∗𝑒 = 𝑒.

Proof. By structural induction on the expression.

Case 𝑒 = a or 𝑒 = ★ or 𝑒 = 𝑥: Trivially, by the definition of action
id∗𝑒 = 𝑒 .

Case 𝑒 = {𝑥}𝑒′: By definition of action we have id∗({𝑥}𝑒′) = {𝑥}(id∗𝑒′),
which by induction hypothesis equals {𝑥}𝑒′.
Case 𝑒 = M(𝑡1 , . . . , 𝑡𝑚): By induction hypothesis id∗𝑡𝑖 = 𝑡𝑖 . We compute
by the definition of the action on a metavariable id∗(M(𝑡1 , . . . , 𝑡𝑚)) =
M(id∗𝑡1 , . . . , id∗𝑡𝑚) = M(𝑡1 , . . . , 𝑡𝑚).
Case 𝑒 = S(𝑒1 , . . . , 𝑒𝑛): We compute

id∗S(𝑒1 , . . . , 𝑒𝑛) = 〈M1 ↦→id∗𝑒1 , . . . ,M𝑛 ↦→id∗𝑒𝑛〉∗S(M̂1 , . . . , M̂𝑛)
which by definition of instantiation and induction hypothesis equals
S(𝑒1 , . . . , 𝑒𝑛).

We can now conclude the proof of the second equation for relative
monads by observing that

(𝜂†Σ)(c,𝜗,𝛾) : ExprΣ(c, 𝜗; 𝛾) → ExprΣ(c, 𝜗; 𝛾)
(𝜂†Σ)(c,𝜗,𝛾) 𝑒 = (𝜂Σ (c, 𝜗, 𝛾))∗𝑒 = id∗𝑒 = 𝑒
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using Lemma 8.3.1 in the last step as the unit coincides with the iden-
tity syntactic transformation.

For the third equation of relative monads we first need a couple of
lemmas.

Lemma 8.3.2 Action interacts with substitution: Let 𝑓 : Σ1 → Σ2 be
a syntactic transformation and 𝑒 and 𝑡 well-formed expressions in
the syntax over Σ1. The following equation holds

𝑓∗(𝑒[𝑡/𝑥]) = ( 𝑓∗𝑒)[ 𝑓∗𝑡/𝑥].

Proof. We proceed by induction on the expression 𝑒 .

Case 𝑒 = a or 𝑒 = 𝑦 or 𝑒 = ★: Since in this case 𝑒[𝑡/𝑥] = 𝑒 and the
syntactic transformation 𝑓 acts trivially, both sides of the equation
compute to the same value 𝑒 .

Case 𝑒 = 𝑥: We compute

𝑓∗(𝑒[𝑡/𝑥]) = 𝑓∗𝑡 = 𝑥[ 𝑓∗𝑡/𝑥] = ( 𝑓∗𝑒)[ 𝑓∗𝑡/𝑥].

Case 𝑒 = M(𝑡1 , . . . , 𝑡𝑚): Compute

𝑓∗(M(𝑡1 , . . . , 𝑡𝑚)[𝑡/𝑥]) = 𝑓∗(M(𝑡1[𝑡/𝑥], . . . , 𝑡𝑚[𝑡/𝑥]))
= M( 𝑓∗(𝑡1[𝑡/𝑥]), . . . , 𝑓∗(𝑡𝑚[𝑡/𝑥]))

we use the induction hypothesis to get

M( 𝑓∗(𝑡1[𝑡/𝑥]), . . . , 𝑓∗(𝑡𝑚[𝑡/𝑥])) = M(( 𝑓∗𝑡1)[ 𝑓∗𝑡/𝑥], . . . , ( 𝑓∗𝑡𝑚)[ 𝑓∗𝑡/𝑥])
= ( 𝑓∗(M(𝑡1 , . . . , 𝑡𝑚)))[ 𝑓∗𝑡/𝑥].

thus concluding the chain of equations that derives the desired result.

Case 𝑒 = S(𝑒1 , . . . , 𝑒𝑛): Similarly to the metavariable case we will use
the induction hypothesis. However, the action of the syntactic trans-
formation 𝑓 is a bit more involved in this case.

𝑓∗(S(𝑒1 , . . . , 𝑒𝑛)[𝑡/𝑥]) = 𝑓∗(S(𝑒1[𝑡/𝑥], . . . , 𝑒𝑛[𝑡/𝑥]))
= 〈N1 ↦→ 𝑓∗(𝑒1[𝑡/𝑥]), . . . ,N𝑛 ↦→ 𝑓∗(𝑒𝑛[𝑡/𝑥])〉∗ 𝑓 (S)

now we can use the induction hypothesis and get

〈N1 ↦→ 𝑓∗(𝑒1[𝑡/𝑥]), . . . ,N𝑛 ↦→ 𝑓∗(𝑒𝑛[𝑡/𝑥])〉∗ 𝑓 (S)
= 〈N1 ↦→( 𝑓∗𝑒1)[ 𝑓∗𝑡/𝑥], . . . ,N𝑛 ↦→( 𝑓∗𝑒𝑛)[ 𝑓∗𝑡/𝑥]〉∗ 𝑓 (S)
= 𝑓∗(S(𝑒1 , . . . , 𝑒𝑛))[ 𝑓∗𝑡/𝑥]

and we can conclude the proof by transitivity of equality.

Instantiations commute with sub-
stitutions: For an appropriate
instantiation of metavariables
®N, and expressions 𝑒′ and 𝑒′′ it
holds that 〈®N↦→®𝑒[𝑒′/𝑥]〉∗𝑒′′[𝑒′/𝑥] =
(〈®N↦→®𝑒〉∗𝑒′′)[𝑒′/𝑥]. Since the bound
variable 𝑥 does not appear in 𝑓 (S) on
the left it holds that 𝑓 (S)[ 𝑓∗𝑡/𝑥] = 𝑓 (S).Lemma 8.3.3 Action interacts with instantiation: Let 𝑓 : Σ1 → Σ2 be

a syntactic transformation. For every syntax class c, metavariable
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shapes [M1:𝛽1 , . . . ,M𝑛 :𝛽𝑛] and 𝜗, variable shapes 𝛾 and 𝛿, expres-
sion 𝑡 ∈ ExprΣ1(c, [M1:𝛽1 , . . . ,M𝑛 :𝛽𝑛]; 𝛿)

𝑓∗(〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉∗𝑡) = 〈M1 ↦→ 𝑓∗𝑒1 , . . . ,M𝑛 ↦→ 𝑓∗𝑒𝑛〉∗( 𝑓∗𝑡)
where 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉 is an instantiation over 𝜗; 𝛾.

Proof. By structural induction on the expression 𝑡. Let

𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉
and

𝐼 𝑓 = 〈M1 ↦→ 𝑓∗𝑒1 , . . . ,M𝑛 ↦→ 𝑓∗𝑒𝑛〉.

Cases 𝑡 = a, 𝑡 = ★ or 𝑡 = 𝑥: Because instantiations and syntactic
transformations act trivially on 𝑡, both sides of the desired equation
compute to 𝑡.

Case 𝑡 = {𝑥}𝑡′: Action on the abstraction is trivial, then we use the
induction hypothesis on 𝑡′.

Case 𝑡 = S(𝑡1 , . . . , 𝑡𝑚): Compute

𝑓∗(𝐼∗S(𝑡1 , . . . , 𝑡𝑚)) = 𝑓∗(S(𝐼∗𝑡1 , . . . , 𝐼∗𝑡𝑚))
= 〈N1 ↦→ 𝑓∗(𝐼∗𝑡1), . . . ,N𝑚 ↦→ 𝑓∗(𝐼∗𝑡𝑚)〉∗ 𝑓 (S)

We then apply the induction hypothesis on 𝑓∗(𝐼∗𝑡1), . . . , 𝑓∗(𝐼∗𝑡𝑚) to get

〈N1 ↦→𝐼 𝑓∗ 𝑡1 , . . . ,N𝑚 ↦→𝐼 𝑓∗ 𝑡𝑛)〉∗ 𝑓 (S)
which can be factored as the composition of instantiations

For appropriate instantiations
of metavariables ®N and ®M,
and expression 𝑒′ it holds that
〈®N↦→〈®M↦→®𝑒〉∗®𝑡〉∗𝑒′ = 〈 ®M↦→®𝑒〉∗(〈®N↦→®𝑡〉∗𝑒′).

𝐼 𝑓∗ (〈N1 ↦→ 𝑓∗𝑡1 , . . . ,N𝑚 ↦→ 𝑓∗𝑡𝑚〉∗( 𝑓 (S)))

which is equal to 𝐼 𝑓∗ ( 𝑓∗(S(𝑡1 , . . . , 𝑡𝑚))) by definition of action of 𝑓 .

Case 𝑡 = M𝑖(𝑡1 , . . . , 𝑡𝑚): We compute

𝑓∗(𝐼∗M𝑖(𝑡1 , . . . , 𝑡𝑚)) = 𝑓∗(𝑒𝑖[𝐼∗𝑡1/𝑥1 , . . . , 𝐼∗𝑡𝑚/𝑥𝑚])
Using Lemma 8.3.2 we get

𝑓∗(𝑒𝑖[𝐼∗𝑡1/𝑥1 , . . . , 𝐼∗𝑡𝑚/𝑥𝑚]) = ( 𝑓∗𝑒𝑖)[ 𝑓∗(𝐼∗𝑡1)/𝑥1 , . . . , 𝑓∗(𝐼∗𝑡𝑚)/𝑥𝑚]
By induction hypothesis this equals

( 𝑓∗𝑒𝑖)[ 𝑓∗(𝐼∗𝑡1)/𝑥1 , . . . , 𝑓∗(𝐼∗𝑡𝑚)/𝑥𝑚] = ( 𝑓∗𝑒𝑖)[𝐼 𝑓∗ 𝑡1/𝑥1 , . . . , 𝐼 𝑓∗ 𝑡𝑚/𝑥𝑚]
= 𝐼 𝑓∗ (M𝑖(𝑡1 , . . . , 𝑡𝑚))

and we conclude the proof by combining the equalities.

The following lemma is the essence of the proof of the third equation
for relative monads.
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Lemma 8.3.4 Action preserves composition: Let 𝑓 : Σ1 → Σ2 and
𝑔 : Σ2 → Σ3 be syntactic transformations. Then for every syntax
class c, metavariable shape 𝜗, variable shape 𝛾 and expression 𝑒 ∈
ExprΣ1(c, 𝜗; 𝛾) it holds that

(𝑔 ◦ 𝑓 )∗𝑒 = 𝑔∗( 𝑓∗𝑒).

Proof. By structural induction on the expression 𝑒 .

Cases 𝑒 = a, 𝑒 = ★ or 𝑒 = 𝑥: By definition of action

(𝑔 ◦ 𝑓 )∗𝑒 = 𝑒 = 𝑔∗( 𝑓∗𝑒)
which is the desired result.

Case 𝑒 = {𝑥}𝑒′: By definition of action we have

(𝑔 ◦ 𝑓 )∗({𝑥}𝑒′) = {𝑥}((𝑔 ◦ 𝑓 )∗𝑒′),
which by induction hypothesis equals {𝑥}(𝑔∗( 𝑓∗𝑒)). This by definition
of action on abstraction equals 𝑔∗( 𝑓∗({𝑥}𝑒′)).
Case 𝑒 = M(𝑡1 , . . . , 𝑡𝑛): By definition

(𝑔 ◦ 𝑓 )∗M(𝑡1 , . . . , 𝑡𝑛) = M((𝑔 ◦ 𝑓 )∗𝑡1 , . . . , (𝑔 ◦ 𝑓 )∗𝑡𝑛)
which by induction hypothesis equalsM(𝑔∗( 𝑓∗𝑡1), . . . , 𝑔∗( 𝑓∗𝑡𝑛)) and this
is by definition of action equal to 𝑔∗( 𝑓∗(M(𝑡1 , . . . , 𝑡𝑛))).
Case 𝑒 = S(𝑒1 , . . . , 𝑒𝑛): We compute

(𝑔 ◦ 𝑓 )∗S(𝑒1 , . . . , 𝑒𝑛) = 〈M1 ↦→(𝑔 ◦ 𝑓 )∗𝑒1 , . . . ,M𝑛 ↦→(𝑔 ◦ 𝑓 )∗𝑒𝑛〉∗((𝑔 ◦ 𝑓 )(S))
= 〈M1 ↦→𝑔∗( 𝑓∗𝑒1), . . . ,M𝑛 ↦→𝑔∗( 𝑓∗𝑒𝑛)〉∗(𝑔∗( 𝑓 S))
= 𝑔∗(〈M1 ↦→ 𝑓∗𝑒1 , . . . ,M𝑛 ↦→ 𝑓∗𝑒𝑛〉∗( 𝑓 S))
= 𝑔∗( 𝑓∗(S(𝑒1 , . . . , 𝑒𝑛))

using the induction hypothesis and definition of composition of syn-
tactic transformations at the second step and Lemma 8.3.3 at the third
step.

To prove the third equation let Σ,Ω, 𝜒 ∈ Sig and let 𝑓 : 𝐽 Σ → 𝑇Ω and
𝑔 : 𝐽Ω → 𝑇𝜒 be syntactic transformations. We need to prove that

(𝑔† ◦ 𝑓 )† = 𝑔† ◦ 𝑓 †.
For a syntactic class c, metavariable shape 𝜗, variable shape 𝛾 and
expression 𝑒 ∈ ExprΣ(c, 𝜗; 𝛾) we compute

(𝑔† ◦ 𝑓 )†(c,𝜗,𝛾) 𝑒 = ((𝑔† ◦ 𝑓 )(c,𝜗,𝛾))∗𝑒
= (𝑔(c,𝜗,𝛾))∗(( 𝑓(c,𝜗,𝛾))∗𝑒)
= ((𝑔† ◦ 𝑓 †)(c,𝜗,𝛾))∗𝑒

using Lemma 8.3.4 in the second step.



8. Syntactic transformations 51

Corollary 8.3.5 Composition is associative: For syntactic transforma-
tions

Σ1 Σ2 Σ3 Σ4
𝑓 𝑔 ℎ

the following holds

ℎ ◦ (𝑔 ◦ 𝑓 ) = (ℎ ◦ 𝑔) ◦ 𝑓 .

Proof. We compute on a symbol S ∈ Σ1

(ℎ ◦ (𝑔 ◦ 𝑓 ))(S) = ℎ∗((𝑔 ◦ 𝑓 ) S) = ℎ∗(𝑔∗( 𝑓 S))
and we can use Lemma 8.3.4 to derive the desired result

ℎ∗(𝑔∗( 𝑓 S)) = (ℎ ◦ 𝑓 )∗( 𝑓 S) = ((ℎ ◦ 𝑔) ◦ 𝑓 )(S).

The action of syntactic transformation 𝑓 : Σ → Ω on abstracted judge-
ments is given by

𝑓∗(𝐴 type) = ( 𝑓∗𝐴 type),
𝑓∗(𝑡 : 𝐴) = ( 𝑓∗𝑡 : 𝑓∗𝐴),

𝑓∗(𝐴 ≡ 𝐵 by ★) = ( 𝑓∗𝐴 ≡ 𝑓∗𝐵 by ★),
𝑓∗(𝑠 ≡ 𝑡 : 𝐴 by ★) = ( 𝑓∗𝑠 ≡ 𝑓∗𝑡 : 𝑓∗𝐴 by ★),

𝑓∗({𝑥:𝐴} J) = ({𝑥: 𝑓∗𝐴} 𝑓∗J).
The action on an abstracted boundary is defined analogously.

On a metacontext Θ = [M1:B1 , . . . ,M𝑛 :B𝑛] the action of 𝑓 is defined
by

𝑓∗Θ = [M1: 𝑓∗B1 , . . . ,M𝑛 : 𝑓∗B𝑛].

The action on the metacontext Θ is
well-defined, since the action of 𝑓
on expressions preserve metavariable
shape: for 𝑖 = 1, . . . , 𝑛 the bound-
ary B𝑖 is over the metavariable shape
[M1:𝛽1 , . . . ,M𝑖−1:𝛽𝑖−1] and since the ac-
tion 𝑓∗B1 preservesmetavariable shape,
the boundary ofM𝑖 is well formed in the
new metacontext.For a variable context Γ = [𝑥1:𝐴1 , . . . , 𝑥𝑛 :𝐴𝑛] over a metacontext Θ

we define
𝑓∗Γ = [𝑥1: 𝑓∗𝐴1 , . . . , 𝑥𝑛 : 𝑓∗𝐴𝑛]

which is well-formed over the metacontext 𝑓∗Θ. The syntactic trans-
formation 𝑓 acts on a hypothetical judgement Θ;Γ ` Jwith

𝑓∗Θ; 𝑓∗Γ ` 𝑓∗J
and analogously on a hypothetical boundary.

Corollary 8.3.6 Let 𝑓 : Σ1 → Σ2 be a syntactic transformation, Θ =
[M1:B1 , . . . ,M𝑛 :B𝑛] andΞmetacontexts over signatureΣ1 andΘ;Γ `
Ja judgement in the syntax over Σ1. Suppose 𝐼 is an instantiation
of Θ over Ξ;Δ. Then

𝑓∗(𝐼∗(Θ;Γ ` J)) = 𝐼 𝑓∗ ( 𝑓∗Θ; 𝑓∗Γ ` 𝑓∗J)
where 𝐼 𝑓 = 〈M1 ↦→ 𝑓∗(𝐼(M1)), . . . ,M𝑛 ↦→ 𝑓∗(𝐼(M𝑛))〉 is an instantiation
of 𝑓∗Θ over 𝑓∗Ξ; 𝑓∗Δ.
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Proof. The proof is a direct application of Lemma 8.3.3: We compute

𝑓∗(𝐼∗(Θ;Γ ` J)) = 𝑓∗(Ξ;Δ, 𝐼∗Γ ` 𝐼∗J) = 𝑓∗Ξ; 𝑓∗Δ, 𝑓∗(𝐼∗Γ) ` 𝑓∗(𝐼∗J) (8.2)

By Lemma 8.3.3 we have that 𝑓∗(𝐼∗J) = 𝐼 𝑓∗ ( 𝑓∗J) and by applying the
same lemma component-wise we get that 𝑓∗(𝐼∗Γ) = 𝐼 𝑓∗ ( 𝑓∗Γ). We can
thus continue (8.2) and finish the proof by

= 𝑓∗Ξ; 𝑓∗Δ, 𝐼
𝑓
∗ ( 𝑓∗Γ) ` 𝐼 𝑓∗ ( 𝑓∗J) = 𝐼 𝑓∗ ( 𝑓∗Θ; 𝑓∗Γ ` 𝑓∗J).



Type-theoretic transformations 9.
While syntactic transformations are a good notion of a transforma-
tion of type theories, they do not consider a very important aspect:
derivability. In general, a syntactic transformation can map a deriv-
able judgement to a non-derivable one, or even one that would not
be considered sensible as seen in Example 8.2.4. Clearly, derivability
structure needs to be taken into account to have a more reasonable
definition of a transformation between type theories.

9.1. The definition and properties of
type-theoretic transformations

A transformation of type theories is expected to preserve derivabil-
ity: it maps derivable judgements to derivable judgements. There are
again several ways to ensure that, depending on what we take as a
transformation on the syntactic level and what kind of restrictions
we impose on it. We propose two notions, the later being our go-to
definition of a transformation between type theories.

Definition 9.1.1 A simple transformation from type theory Tto U is
a symbol renaming 𝑓 : ΣT → ΣU of signatures such that for every
specific rule Θ =⇒ j in T there is a derivation D of 𝑓∗Θ =⇒ 𝑓∗j
in U.

The notion of the simple map is similar to the simple maps defined
in [22] [22]: Bauer et al. (2020), A general

definition of dependent type theories
.

Just like in the case of symbol renamings, simple transformations are
quite restrictive, since we can only rename symbols in a derivable
way. A much more flexible notion arises from the syntactic transfor-
mation.

Definition 9.1.2 A type-theoretic transformation 𝑓 : T→ U is a syn-
tactic transformation 𝑓 : ΣT → ΣU such that for each rule Θ =⇒ j

in Twe have a derivation D of 𝑓∗Θ =⇒ 𝑓∗j in U.

The notion of type-theoretic transfor-
mation corresponds to a raw type the-
ory map from [22].

In the definitions of simple transformations and type-theoretic trans-
formations we could alternatively state the condition that 𝑓∗Θ =⇒ 𝑓∗j
is derivable in U. In principle if we know a judgement is derivable, we
can always obtain a derivation by running a brute-force proof search.
However, since our proofs are inductive and to avoid unnecessary
uses of axiom of choice, we make the derivations a part of the speci-
fication of the type-theoretic transformation. This way the proofs re-
main constructive as we are always able to give explicit constructions,
even when they depend on the derivations.

We will again face the dilemma of ex-
plicit derivation in Section 10.3.
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1: Instantiation 𝐼 𝑓 maps the metavari-
ables of Ξ to the premises of the (de-
rived) rule 𝑓∗Ξ; [] ` 𝑓∗j′. The premises
are derivable by induction hypothesis,
so the instantiation 𝐼 𝑓 is derivable as
well.

A simple example of a type-theoretic transformation is the identity
transformation id : T→ T, which acts as the identity syntactic trans-
formation on the underlying signature id : ΣT → ΣT. Indeed, if we
take a rule Θ =⇒ j in the theory T, by Lemma 8.3.1 id∗(Θ; [] ` j) =
Θ; []; ` j, which can be derived in one step using the same rule. More
interesting examples are shown in Section 9.3.

The condition for type-theoretic transformations ensures the desired
property that the transformations preserve derivability, as we can see
from the next theorem.

Theorem 9.1.3 Let 𝑓 : T → U be a type-theoretic transformation.
For a derivable judgement Θ;Γ ` J in T, the action of 𝑓

𝑓∗Θ; 𝑓∗Γ ` 𝑓∗J
is derivable in U and similarly for boundaries.

Proof. We proceed by induction on the derivation and consider cases
for the last rule applied.

Cases TT-ABSTR, TT-TY-REFL, TT-TY-SYM, TT-TY-TRAN, TT-TM-REFL, TT-TM-
SYM, TT-TM-TRAN, TT-CONV-TM, TT-CONV-EQ: Apply the induction hypoth-
esis on the premises of the rule and use the same rule again.

Cases TT-BDRY-ABSTR, TT-BDRY-EQTM, TT-BDRY-EQTY, TT-BDRY-TM, TT-BDRY-
TY : Again apply the induction hypothesis on the premises of the rule
and use the same rule to get the desired conclusion.

Case TT-VAR: We get the desired result by applying the rule TT-VAR
again, since the action of the transformation does not change the
variable name and it acts on the variable context appropriately.

Cases TT-META, TT-META-CONGR: Apply the induction hypothesis on the
premises of the rule. Since the action of transformation does not
change the metavariable name and acts on the metacontext appro-
priately, we can apply the rule TT-META again.

Case Specific rule Ξ =⇒ j′ in the theory T: We have a derivable in-
stantiation 𝐼 of metavariables Ξ over Θ;Γ such that

𝐼∗(Ξ; [] ` j′) = (Θ;Γ ` j).
Since 𝑓 is a type-theoretic transformation, we have a derivation of
𝑓∗Ξ; [] ` 𝑓∗j′ in the theory U. By induction hypothesis the instanti-
ation 𝐼 𝑓 = 𝑓∗𝐼∗ is derivable in U1. By Theorem 5.1.4 the judgement
𝐼 𝑓∗ ( 𝑓∗Ξ; [] ` 𝑓∗j′) is derivable, which is by Corollary 8.3.6 equal to the
desired judgement 𝑓∗Θ; 𝑓∗Γ ` 𝑓∗j.

Corollary 9.1.4 The composition of type theoretic transformations
as syntactic transformations is also a type-theoretic transforma-
tion.
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Proof. Let 𝑓 : T→ U and 𝑔 : U → V be type-theoretic transforma-
tions. To show that the composition of underlying syntactic transfor-
mations 𝑔 ◦ 𝑓 is a type theoretic transformation, we need to check
the following condition: for every specific rule Θ =⇒ j in Twe have
a derivation of

(𝑔 ◦ 𝑓 )∗Θ; [] ` (𝑔 ◦ 𝑓 )∗j
which is equal to

𝑔∗( 𝑓∗Θ); [] ` 𝑔∗( 𝑓∗j)
by Lemma 8.3.4. Since 𝑓 is a type-theoretic transformation, we have a
derivation of 𝑓∗Θ; []; 𝑓∗j. Because 𝑔 is also a type-theoretic transfor-
mation, by Theorem 9.1.3 we have a derivation of 𝑔∗( 𝑓∗Θ); [] ` 𝑔∗( 𝑓∗j),
which concludes the proof.

Corollary 9.1.4 allows us to define the composition of type-theoretic
transformations as the composition of the underlying syntactic trans-
formations.

Similarly to equality of instantiations we can define equality of type-
theoretic transformations.

Definition 9.1.5 Type theoretic transformations 𝑓 : T → U and
𝑔 : T→ U are judgementally equal if for every specific object rule
𝑅 = Θ =⇒ b 𝑒 of T the judgement

𝑓∗Θ; [] `U ( 𝑓∗b) 𝑓∗𝑒 ≡ 𝑔∗𝑒

is derivable.

Similarly to the congruence rules, the definition is left-leaning. But
the right-leaning version is admissible, once Proposition 9.1.6 is es-
tablished.

If 𝑓 and 𝑔 are judgementally equal type-theoretic transformations,
they act in a judgementally equal way on every judgement.

Proposition 9.1.6 Let 𝑓 : T→ U and 𝑔 : T→ U be judgementally
equal type-theoretic transformations. Let Θ;Γ `T B𝑒 be a strongly
derivable object judgement in T. Then

𝑓∗Θ; 𝑓∗Γ `U ( 𝑓∗B) 𝑓∗𝑒 ≡ 𝑔∗𝑒

is derivable in U.

The proof is mutually recursive with other lemmas about judgemen-
tally equal transformations: Lemma 9.1.9, Lemma 9.1.8 and Lemma 9.1.7.
The recursion is well-founded by a lexicographic order on the length
of the metacontext and the size of the derivation: either we use the
lemmas on a shorter metacontext, or on a metacontext of the same
size, but smaller derivations (premises).

Proof. By induction on the derivation of Θ;Γ `T B𝑒 . By inversion we
consider the cases of how the derivation ends.
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Case TT-VAR: Because type-theoretic transformations act trivially on
variables, 𝑓∗a = 𝑔∗a = a, so the desired equation 𝑓∗Θ; 𝑓∗Γ `U a ≡ a :
( 𝑓∗Γ)(a) can be derived using TT-TM-REFL.

Case TT-ABSTR: The derivation ends with

Θ;Γ `T 𝐴 type a ∉ |Γ| Θ;Γ, a:𝐴 `T (B[a/𝑥]) 𝑒[a/𝑥]
Θ;Γ `T {𝑥:𝐴} B𝑒

Using Theorem 9.1.3 on the first premise gives us a derivation of

𝑓∗Θ; 𝑓∗Γ `U 𝑓∗𝐴 type.

By induction hypothesis on the last premise we get a derivation of

𝑓∗Θ; 𝑓∗Γ, a: 𝑓∗𝐴 `U ( 𝑓∗(B[a/𝑥])) 𝑓∗(𝑒[a/𝑥]) ≡ 𝑔∗(𝑒[a/𝑥])
which is by Lemma 8.3.2 equal to

𝑓∗Θ; 𝑓∗Γ, a: 𝑓∗𝐴 `U (( 𝑓∗B)[a/𝑥])) ( 𝑓∗𝑒)[a/𝑥] ≡ (𝑔∗𝑒)[a/𝑥]
We can now conclude the desired derivation by TT-ABSTR.

Case TT-META: The derivation ends with

Θ(M𝑘) = {𝑥1:𝐴1} · · · {𝑥𝑚 :𝐴𝑚} b

Θ;Γ `T 𝑡 𝑗 : 𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ `T b[®𝑡/®𝑥]
Θ;Γ `T (b[®𝑡/®𝑥])M𝑘(®𝑡)

By induction hypothesis for the first 𝑚 premises we get derivations
of

𝑓∗Θ; 𝑓∗Γ `U 𝑓∗𝑡 𝑗 ≡ 𝑔∗𝑡 𝑗 : 𝑓∗(𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)])
for 𝑗 = 1, . . . , 𝑚 which are by Lemma 8.3.2 equal to

𝑓∗Θ; 𝑓∗Γ `U 𝑓∗𝑡 𝑗 ≡ 𝑔∗𝑡 𝑗 : ( 𝑓∗𝐴 𝑗)[ 𝑓∗®𝑡(𝑗)/®𝑥(𝑗)].
Using Theorem 9.1.3 and Lemma 8.3.2 on the last premise gives us a
derivation of

𝑓∗Θ; 𝑓∗Γ `T ( 𝑓∗b)[ 𝑓∗®𝑡/®𝑥]
and we can conclude by TT-META-CONGR-EC.

Case Specific object rule: Suppose Θ;Γ `T B𝑒 is derived by the spe-
cific object rule Ξ =⇒ b′ 𝑒′ with a derivable (in T) instantiation

𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉
forΞ = [M1:B1 , . . . ,M𝑛 :B𝑛]. By assumption 𝑓 and 𝑔 are judgementally
equal, so we have a derivation of

𝑓∗Ξ; [] `U ( 𝑓∗b′) 𝑓∗𝑒′ ≡ 𝑔∗𝑒′ . (9.1)

Since 𝐼 is derivable we have derivations of

Θ;Γ `T (𝐼(𝑖)∗B𝑖) 𝑒𝑖 (9.2)
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2: We can view 𝐼′𝑔 as an instantiation of
𝑓∗Ξ because ar( 𝑓∗B𝑖) = ar(𝑔∗B𝑖).

for 𝑖 = 1, . . . , 𝑛 and by induction hypothesis

𝑓∗Θ; 𝑓∗Γ `U ( 𝑓∗(𝐼(𝑖)∗B𝑖)) 𝑓∗𝑒𝑖 ≡ 𝑔∗𝑒𝑖 (9.3)

are also derivable for the object premises. Because 𝑓 and 𝑔 preserve
derivability by Theorem 9.1.3 the judgements

𝑓∗Θ; 𝑓∗Γ `U ( 𝑓∗(𝐼(𝑖)∗B𝑖)) 𝑓∗𝑒𝑖 and 𝑔∗Θ; 𝑔∗Γ `U (𝑔∗(𝐼(𝑖)∗B𝑖)) 𝑔∗𝑒𝑖
are also derivable for 𝑖 = 1, . . . , 𝑛 and they are by Lemma 8.3.3 equal
to

𝑓∗Θ; 𝑓∗Γ `U ((𝐼 𝑓 )(𝑖)∗( 𝑓∗B𝑖)) 𝑓∗𝑒𝑖 and 𝑔∗Θ; 𝑔∗Γ `U ((𝐼𝑔)(𝑖)∗(𝑔∗B𝑖)) 𝑔∗𝑒𝑖
(9.4)

for instantiations

𝐼 𝑓 = 〈M1 ↦→ 𝑓∗𝑒1 , . . . ,M𝑛 ↦→ 𝑓∗𝑒𝑛〉 and 𝐼𝑔 = 〈M1 ↦→𝑔∗𝑒1 , . . . ,M𝑛 ↦→𝑔∗𝑒𝑛〉
of 𝑓∗Ξ over 𝑓∗Θ; 𝑓∗Γ and of 𝑔∗Ξ over 𝑔∗Θ; 𝑔∗Γ respectively. This also
means that 𝐼 𝑓 and 𝐼𝑔 are derivable instantiations. Using Lemma 9.1.8
and Lemma 9.1.9 on the judgements from the right side of (9.4) we get
derivations of

𝑓∗Θ; 𝑓∗Γ `U ((𝐼′𝑔)(𝑖)∗(𝑔∗B𝑖)) 𝑔∗𝑒𝑖

We use Lemma 9.1.8 and Lemma 9.1.9 is
on smaller derivations than the one we
started with.

for 𝐼′𝑔 = 〈M1 ↦→𝑔∗𝑒1 , . . . ,M𝑛 ↦→𝑔∗𝑒𝑛〉 an instantiation of2 𝑓∗Ξ over 𝑓∗Θ; 𝑓∗Γ.
This means 𝐼′𝑔 is a derivable instantiation. Derivability of (9.3) gives
us that 𝐼 𝑓 and 𝐼′𝑔 are judgementally equal instantiations. Instantiat-
ing (9.1) with 𝐼 𝑓 gives us by Theorem 5.1.4 a derivable judgement

𝑓∗Θ; 𝑓∗Γ `U ((𝐼 𝑓 )∗( 𝑓∗b′)) (𝐼 𝑓 )∗( 𝑓∗𝑒′) ≡ (𝐼 𝑓 )∗(𝑔∗𝑒′)
Which is by Lemma 8.3.3 equal to

𝑓∗Θ; 𝑓∗Γ `U ( 𝑓∗B) 𝑓∗𝑒 ≡ (𝐼 𝑓 )∗(𝑔∗𝑒′) . (9.5)

By Theorem 5.1.6 on (9.1) we get a derivation of

𝑓∗Ξ; [] `U ( 𝑓∗b′) 𝑔∗𝑒′

on which we use Theorem 5.1.5 with judgementally equal instantia-
tions 𝐼 𝑓 and 𝐼′𝑔 to obtain a derivation of

𝑓∗Θ; 𝑓∗Γ `U ((𝐼 𝑓 )∗( 𝑓∗b′)) (𝐼 𝑓 )∗(𝑔∗𝑒′) ≡ (𝐼′𝑔)∗(𝑔∗𝑒′)

that is by Lemma 8.3.3 equal to

𝑓∗Θ; 𝑓∗Γ `U ( 𝑓∗B) (𝐼 𝑓 )∗(𝑔∗𝑒′) ≡ 𝑔∗𝑒 . (9.6)

We conclude the proof by TT-TY-TRAN or TT-TM-TRAN on (9.5) and (9.6).
The proof conludes with the appropri-
ate transitivity rule depending on the
form of the object boundary B.

The following lemmas see to the fact that every boundary, judgement,
variable context or metacontext which has been acted on by a trans-
formation, can be replaced by the action of a judgementally equal
transformation.
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Lemma 9.1.7 Let 𝑓 : T→ U and 𝑔 : T→ U be judgementally equal
type-theoretic transformations and Θ;Γ `T B be a strongly deriv-
able boundary in T. If

𝑓∗Θ; 𝑓∗Γ `U ( 𝑓∗B) 𝑒
is derivable in U, then

𝑓∗Θ; 𝑓∗Γ `U (𝑔∗B) 𝑒
is also derivable.

The proof follows closely the analogous
statement for judgementally equal in-
stantiations Lemma 5.3.5.

Proof. By structural induction on the derivation of Θ;Γ `T B.

Case TT-BDRY-TY: Trivial, because 𝑓∗(□ type) = 𝑔∗(□ type) = □ type.

Case TT-BDRY-TM: If the derivation ends with

Θ;Γ `T 𝐴 type

Θ;Γ `T□ : 𝐴

then by Proposition 9.1.6 applied to the premise we have that
We use Proposition 9.1.6 on smaller
derivation than the one we started with.

𝑓∗Θ; 𝑓∗Γ `U 𝑓∗𝐴 ≡ 𝑔∗𝐴.

We can thus convert

𝑓∗Θ; 𝑓∗Γ `U 𝑒 : ( 𝑓∗𝐴)
to

𝑓∗Θ; 𝑓∗Γ `U 𝑒 : (𝑔∗𝐴).
Case TT-BDRY-EQTM: If the derivation ends with

Θ;Γ `T 𝐴 type Θ;Γ `T 𝑠 : 𝐴 Θ;Γ `T 𝑡 : 𝐴
Θ;Γ `T 𝑠 ≡ 𝑡 : 𝐴 by □

then Proposition 9.1.6 applied to the premises gives us derivations of We again use Proposition 9.1.6 on
smaller derivations than the one we
started with.

𝑓∗Θ; 𝑓∗Γ `U 𝑓∗𝐴 ≡ 𝑔∗𝐴 (9.7)
𝑓∗Θ; 𝑓∗Γ `U 𝑓∗𝑠 ≡ 𝑔∗𝑠 : 𝑓∗𝐴 (9.8)
𝑓∗Θ; 𝑓∗Γ `U 𝑓∗𝑡 ≡ 𝑔∗𝑡 : 𝑓∗𝐴 (9.9)

By TT-TM-TRAN we can combine the derivable equation

𝑓∗Θ; 𝑓∗Γ `U 𝑓∗𝑠 ≡ 𝑓∗𝑡 : 𝑓∗𝐴

with (9.8) and (9.9) to get a derivable judgement

𝑓∗Θ; 𝑓∗Γ `U 𝑔∗𝑠 ≡ 𝑔∗𝑡 : 𝑓∗𝐴

which we can convert using TT-CONV-EQ on (9.7) to get the desired
derivation.
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Case TT-BDRY-EQTY: Similar to the case TT-BDRY-EQTM.

Case TT-BDRY-ABSTR: Suppose 𝑒 = {𝑥}𝑒′ and the derivation ends with

Θ;Γ `T 𝐴 type a ∉ |Γ| Θ;Γ, a:𝐴 `T B′[a/𝑥]
Θ;Γ `T {𝑥:𝐴} B′

where we may assume a ∉ |Γ| without loss of generality. Proposi-
tion 9.1.6 applied to the first premise derives

𝑓∗Θ; 𝑓∗Γ `U 𝑓∗𝐴 ≡ 𝑔∗𝐴. (9.10)

By inverting the assumption 𝑓∗Θ; 𝑓∗Γ `U {𝑥: 𝑓∗𝐴} ( 𝑓∗B′) 𝑒 , and possibly
renaming a free variable to a, we obtain

𝑓∗Θ; 𝑓∗Γ `U 𝑓∗𝐴 type and 𝑓∗Θ; 𝑓∗Γ, a: 𝑓∗𝐴 `U (( 𝑓∗B′) 𝑒 )[a/𝑥].
Then the induction hypothesis for the second premise yields

𝑓∗Θ; 𝑓∗Γ, a: 𝑓∗𝐴 `U ((𝑔∗B′) 𝑒 )[a/𝑥],

which we may abstract to 𝑓∗Θ; 𝑓∗Γ `U {𝑥: 𝑓∗𝐴} (𝑔∗B′) 𝑒 and apply TT-
CONV-ABSTR to convert it to the desired judgement

𝑓∗Θ; 𝑓∗Γ `U {𝑥:𝑔∗𝐴} (𝑔∗B′) 𝑒 .
The premise 𝑓∗Θ; 𝑓∗Γ `U 𝑔∗𝐴 type is derived by Theorem 5.1.6 from (9.10).

Lemma 9.1.8 Let 𝑓 : T→ Uand 𝑔 : T→ Ube judgementally equal
type-theoretic transformations and Θ;Γ a derivable context in T.
If 𝑓∗Θ; 𝑓∗Γ `U J is derivable, then 𝑓∗Θ; 𝑔∗Γ `U J is also derivable.

Proof. The idea is to abstract away the context and use TT-CONV-ABSTR
to replace the types with judgementally equal ones. By induction on
the derivation of the variable context Γ.

Case VCTX-EMPTY: Trivial, because 𝑓∗[] = 𝑔∗[] = [].
Case VCTX-EXTEND: The derivation ends with

Θ `T Γ′ vctx Θ, Γ′ `T 𝐴 type a ∉ |Γ′ |
Θ `T 〈Γ′, a:𝐴〉 vctx

Theorem 9.1.3 on the second premise leads to derivability of

𝑓∗Θ, 𝑓∗Γ′ `U 𝑓∗𝐴

and using TT-ABSTR with 𝑓∗Θ; 𝑓∗Γ `U Jgives us a derivable judgement
𝑓∗Θ, 𝑓∗Γ′ `U {𝑥: 𝑓∗𝐴} J. By induction hypothesis

𝑓∗Θ, 𝑔∗Γ′ `U {𝑥: 𝑓∗𝐴} J
is derivable. Proposition 9.1.6 on the second premise gives us a deriva-
tion of

We use Proposition 9.1.6 on smaller
derivation than the one we started with.𝑓∗Θ, 𝑓∗Γ′ `U 𝑓∗𝐴 ≡ 𝑔∗𝐴 for which the induction hypothesis
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again gives us 𝑓∗Θ, 𝑔∗Γ′ `U 𝑓∗𝐴 ≡ 𝑔∗𝐴. We use TT-CONV-ABSTR to ob-
tain a derivation of

𝑓∗Θ, 𝑔∗Γ′ `U {𝑥:𝑔∗𝐴} J
and conclude by un-abstracting using inversion on the last judge-
ment.

While the previous two lemmas were similar in the case of judge-
mentally equal instantiations, the following lemma is specific to type-
theoretic transformations, as it relates “judgementally equal meta-
contexts”: metacontexts acted on by judgementally equal transforma-
tions.

Lemma 9.1.9 Let 𝑓 : T→ U and 𝑔 : T→ Ube judgementally equal
type-theoretic transformations andΘ a derivablemetacontext inT.

1. If 𝑓∗Θ; `U Γ vctx is derivable, then 𝑔∗Θ `U Γ vctx is derivable.
2. If 𝑓∗Θ;Γ `U B is strongly derivable, then 𝑔∗Θ;Γ `U B is

strongly derivable.
3. If 𝑓∗Θ;Γ `U Jis strongly derivable, then 𝑔∗Θ;Γ `U Jis strongly

derivable.

The proof of Lemma 9.1.9 is very technical, so let us describe the main
idea: we get from themetacontext 𝑓∗Θ to 𝑔∗Θ by the instantiation that
maps every metavariable to its generic application. Since transforma-
tions act trivially on metavariables, this instantiation is well-formed.
To prove it is derivable we recursively use the fact that judgementally
equal instantiations lead to judgemental equality.

Proof. All parts of the proof are mutually recursive.

Part (1): We proceed by induction on the derivation of Γ.

Case VCTX-EMPTY: Trivial, because the empty variable context is deriv-
able in every derivable metacontext.

Case VCTX-EXTEND: The derivation ends with

𝑓∗Θ `U Γ′ vctx 𝑓∗Θ, Γ′ `U 𝐴 type a ∉ |Γ′ |
𝑓∗Θ `U 〈Γ′, a:𝐴〉 vctx

By induction hypothesis on the first premise we get a derivation of
𝑔∗Θ `U Γ′ vctx and induction hypothesis on the second premise
with Part (3) yields derivability of 𝑔∗Θ, Γ′ `U 𝐴 type so we can con-
clude with VCTX-EXTEND.

Part (2): We proceed by induction of length of Θ.

Case Θ = []: Trivial, because 𝑓∗[] = 𝑔∗[] = [].
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Case Θ = [M1:B1 , . . . ,M𝑛+1:B𝑛+1]: Note that `U 𝑔∗Θ mctx is derivable
by Theorem 9.1.3. We can obtain 𝑔∗Θ;Γ `U B from 𝑓∗Θ;Γ `U B by
acting with the instantiation

𝐼 = 〈M1 ↦→M̂1 , . . . ,M𝑛+1 ↦→M̂𝑛+1〉
of the metacontext 𝑓∗Θ over the context 𝑔∗Θ;Γ which is derivable
by Part (1). Once we show that 𝐼 is a derivable instantiation we can
conclude the proof by Theorem 5.1.4. To prove 𝐼 is derivable we need
to show that for 𝑖 = 1, . . . , 𝑛 + 1

𝑔∗Θ;Γ `U (𝐼(𝑖)∗( 𝑓∗B𝑖)) M̂𝑖

which is equal to
𝑔∗Θ;Γ `U ( 𝑓∗B𝑖) M̂𝑖

is derivable. Since 𝑓 preserves derivability and Θ is a derivable meta-
context, for every 𝑖 = 1, . . . , 𝑛 + 1

𝑓∗([M1:B1 , . . . ,M𝑖 :B𝑖]); [] `U ( 𝑓∗B𝑖) M̂𝑖

is strongly derivable. By induction hypothesis on Part (3) for 𝑖 = 1, . . . , 𝑛
we derive

𝑔∗([M1:B1 , . . . ,M𝑖 :B𝑖]); [] `U ( 𝑓∗B𝑖) M̂𝑖

which we can weaken to

𝑔∗Θ;Γ `U ( 𝑓∗B𝑖) M̂𝑖 .

For 𝑖 = 𝑛 + 1 by inversion on derivation of `T Θ mctx we obtain a
derivation of

[M1:B1 , . . . ,M𝑛 :B𝑛]; [] `T B𝑛+1. (9.11)

Let B𝑛+1 = {𝑥1:𝐴1} · · · {𝑥𝑚 :𝐴𝑚} b. By inversion we obtain derivations
of

[M1:B1 , . . . ,M𝑛 :B𝑛]; [a1:𝐴1 , . . . , a𝑗−1:𝐴 𝑗−1[®a(𝑗−1)/®𝑥(𝑗−1)]] `T 𝐴 𝑗[®a(𝑗)/®𝑥(𝑗)] type
for 𝑗 = 1, . . . , 𝑚. We can apply Proposition 9.1.6 followed by the induc-
tion hypothesis on the shorter metacontext to obtain derivations of We use Proposition 9.1.6 on a shorter

metacontext.

𝑔∗([M1:B1 , . . . ,M𝑛 :B𝑛]); [a1: 𝑓∗𝐴1 , . . . , a𝑗−1: 𝑓∗𝐴 𝑗−1[®a(𝑗−1)/®𝑥(𝑗−1)]]
`U 𝑓∗𝐴 𝑗[®a(𝑗)/®𝑥(𝑗)] ≡ 𝑔∗𝐴 𝑗[®a(𝑗)/®𝑥(𝑗)]

which we can weaken to

𝑔∗Θ; [a1: 𝑓∗𝐴1 , . . . , a𝑗−1: 𝑓∗𝐴 𝑗−1[®a(𝑗−1)/®𝑥(𝑗−1)]]
`U 𝑓∗𝐴 𝑗[®a(𝑗)/®𝑥(𝑗)] ≡ 𝑔∗𝐴 𝑗[®a(𝑗)/®𝑥(𝑗)].

Using TT-META we can derive

𝑔∗Θ; [] `U { ®𝑥:𝑔∗ ®𝐴}(𝑔∗b) M̂𝑛+1 . (9.12)

Iteratively using TT-ABSTR and TT-CONV-ABSTR on (9.12) we can now
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derive
𝑔∗Θ; [] `U { ®𝑥: 𝑓∗ ®𝐴}(𝑔∗b) M̂𝑛+1 .

By Proposition 4.3.7 the judgement

𝑔∗Θ; [®a: 𝑓∗ ®𝐴[®a/®𝑥]] `U (𝑔∗b[®a/®𝑥])M𝑛+1(®a) (9.13)
We use vector notation ®𝐴[®a/®𝑥] to mean
we substitute simultaneously all the 𝑥𝑘
with a𝑘 for 𝑘 = 1, . . . , 𝑚 − 1 in all 𝐴𝑗 for
𝑗 = 1, . . . , 𝑚.

is derivable. We now consider the cases for the boundary thesis b.

Case b = (□ type): Since 𝑓∗(M𝑛+1(®a) type) = 𝑔∗(M𝑛+1(®a) type) = M𝑛+1(®a) type
we can obtain the desired derivation by Proposition 4.3.7.

Case b = (□ : 𝐵): Proposition 9.1.6 gives us

𝑓∗([M1:B1 , . . . ,M𝑛 :B𝑛]); [®a: 𝑓∗ ®𝐴[®a/®𝑥]] `U 𝑓∗𝐵[®a/®𝑥] ≡ 𝑔∗𝐵[®a/®𝑥]
which by induction hypothesis and weakening yields

𝑔∗Θ; [®a: 𝑓∗ ®𝐴[®a/®𝑥]] `U 𝑓∗𝐵[®a/®𝑥] ≡ 𝑔∗𝐵[®a/®𝑥]
We can convert (9.13) along the symmetric version of this equality and
conclude by Proposition 4.3.7.

Case b = (𝐵 ≡ 𝐶 by □): By inversion
[M1:B1 , . . . ,M𝑛 :B𝑛]; [] `T 𝐵 type and [M1:B1 , . . . ,M𝑛 :B𝑛]; [] `T 𝐶 type

are also derivable. Proposition 9.1.6 gives us derivations of

𝑓∗([M1:B1 , . . . ,M𝑛 :B𝑛]); [®a: 𝑓∗ ®𝐴[®a/®𝑥]] `U 𝑓∗𝐵[®a/®𝑥] ≡ 𝑔∗𝐵[®a/®𝑥]
𝑓∗([M1:B1 , . . . ,M𝑛 :B𝑛]); [®a: 𝑓∗ ®𝐴[®a/®𝑥]] `U 𝑓∗𝐶[®a/®𝑥] ≡ 𝑔∗𝐶[®a/®𝑥]

which by induction hypothesis and weakening yield

𝑔∗Θ; [®a: 𝑓∗ ®𝐴[®a/®𝑥]] `U 𝑓∗𝐵[®a/®𝑥] ≡ 𝑔∗𝐵[®a/®𝑥]
𝑔∗Θ; [®a: 𝑓∗ ®𝐴[®a/®𝑥]] `U 𝑓∗𝐶[®a/®𝑥] ≡ 𝑔∗𝐶[®a/®𝑥].

With the above equations and the use of TT-TM-SYM and TT-TY-TRAN
on (9.13) we obtain the desired judgement.

Case b = (𝑠 ≡ 𝑡 : 𝑇 by □): Proceed similarly to the case for type
equality boundary.

Part (3): The proof proceeds similarly to Part (2).

Corollary 9.1.10 Let 𝑓 : T → U and 𝑔 : T → U be judgementally
equal type-theoretic transformations and Θ;Γ `T B be a strongly
derivable boundary in T. If

𝑓∗Θ; 𝑓∗Γ `U ( 𝑓∗B) 𝑒
is derivable in U, then

𝑔∗Θ; 𝑔∗Γ `U (𝑔∗B) 𝑒
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3: The signatures do not necessarily
contain different symbols. The indexed
letters 𝑇 and 𝑈 in the signatures are
meta-level variables for the symbols of
the two type theories.

is also derivable.

Proof. Apply Lemma 9.1.7, followed by Lemma 9.1.8 and Lemma 9.1.9.

9.2. The category of type theories

Having defined type-theoretic transformations and their composition,
we can now organize type theories in a category.

Definition 9.2.1 The category of type theories has objects (raw) type
theories and morphisms transformations of type theories.

Since composition of type theories is associative by Corollary 8.3.5
and the identity type-theoretic transformation behaves appropriately,
this is a well-defined category.

We can now inspect the properties of our newly defined category. We
state the two obvious ones and leave the rest for future work.

Proposition 9.2.2 The initial object in the category of type theories
is the empty type theory. The empty type theory is the type

theory with the empty signature and
no specific rules.

Note that the empty type theory still has
derivable judgements, but they always
happen in a non-empty context. For ex-
ample

[A:(□ type), a:(□ : 𝐴), B:({𝑥:𝐴}□ type)];
[] ` B(a) type

is a derivable judgement of the empty
type theory.

Proof. Let Tbe a type theory. The unique type-theoretic transforma-
tion from the empty type theory to T is the empty syntactic trans-
formation from the empty signature [] to the expressions of T. It is
trivially a type-theoretic transformation, because there are no spe-
cific rules to map to derivations.

Proposition 9.2.3 The category of type theories has coproducts.

Proof. The idea is that the coproduct of type theories is obtained by
a disjoint union of the signatures and a disjoint union of rules. The
injection maps are the obvious injections of signatures and the (cho-
sen) derivations of rules are the injections of the rules.

To dissect this idea in our formalism, let T and U be type theories.
Let

ΣT = [𝑇1:𝛼1 , . . . , 𝑇𝑛 :𝛼𝑛] and ΣU = [𝑈1:𝛽1 , . . . , 𝑈𝑚 :𝛽𝑚]
be the signatures3 of the given theories. We construct the signature
of the coproduct T+ U

ΣT+U = [𝑇T
1 :𝛼1 , . . . , 𝑇T

𝑛 :𝛼𝑛 , 𝑈U
1 :𝛽1 , . . . , 𝑈U

𝑚 :𝛽𝑚]



9. Type-theoretic transformations 64

and injections the syntactic transformations induced by the symbol
renamings

𝑖1 : ΣT → ΣT+U

𝑇𝑗 ↦→ 𝑇T
𝑗 for 𝑗 = 1, . . . , 𝑛

and

𝑖1 : ΣU → ΣT+U

𝑈𝑘 ↦→ 𝑈U
𝑘 for 𝑘 = 1, . . . , 𝑚.

The specific rules of T+ U are

▶ (𝑖1)∗𝑅 for 𝑅 a specific rule in T,
▶ (𝑖2)∗𝑅 for 𝑅 a specific rule in U.

With this definition 𝑖1 and 𝑖2 are trivially type-theoretic transforma-
tions. We need to show that T+ U is indeed a coproduct in the cat-
egory of type theories. Let Z be a type theory with type-theoretic
transformations 𝑧1 and 𝑧2 as in the following diagram.

Z

T T+ U U
𝑖1

𝑧1 𝑓

𝑖2

𝑧2

For the diagram to commute, the unique type-theoretic transforma-
tion 𝑓 maps symbols 𝑇T

𝑗 to 𝑧1(𝑇𝑗) for 𝑗 = 1, . . . , 𝑛 and symbols 𝑈U
𝑗 to

𝑧2(𝑈 𝑗) for 𝑗 = 1, . . . , 𝑚. It is now easy to see that 𝑓 is a type-theoretic
transformation if it uses the derivations from transformations 𝑧 for
appropriate specific rules.

Using the construction for coproducts we can build raw type theories
by combining independent parts of the type theory (like having de-
pendent products and dependent sums). However in practice we are
usually interested in finitary or even standard type theories, so we
would need to appropriately combine the well-ordering of the rules
as well.

9.3. Examples of type-theoretic
transformations

We show the scope and limitations of our definition of type-theoretic
transformations by exhibiting some interesting examples and non-
examples.

We start by looking at examples. Besides the usual symbol renam-
ings, there are some concrete and some more theoretically flavored
transformations that adhere the this structure.

Note that since syntactic transforma-
tions preserve classes, propositions
have to be mapped to terms and not
syntactic types.
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Example 9.3.1 One of the most well-known transformations is the
propositions as types, also known as the Curry-Howard correspon-
dence [48, 49, 74, 149] [149]: Wadler (2015), “Propositions as

Types”
[48]: Curry (1934), “Functionality in
Combinatory Logic”
[49]: Curry et al. (1958), Combinatory
logic. Vol. I
[74]: Howard (1980), “The Formulae-as-
Types Notion of Construction”

that translates mathematical proofs of first-
order logic to terms of type theory and thus gives them computa-
tional content. We exhibit the transformation from first-order logic
(FOL) to the relevant fragment of the Martin-Löf type theory (MLTT)
[97–100]

[100]: Martin-Löf (1998), “An intuitionis-
tic theory of types”
[97]: Martin-Löf (1975), “An intuitionistic
theory of types: predicative part”
[98]: Martin-Löf (1982), “Constructive
mathematics and computer program-
ming”
[99]: Martin-Löf (1984), Intuitionistic
type theory

with one universe of (small) types.

The full formulation of FOL and MLTT, as well as the type-theoretic
transformation is in the Appendix Chapter A. The idea is to map
the type o of propositions in FOL to the universe U of MLTT and the
terms that represent propositions p : o to the codes for types a : U.
We also map the type i of individuals in FOL to the base type in
MLTT.

The rest of the connectives are mapped as usual, for example the
conjunctions conj are mapped to the simple products σ(p, {𝑥}q)
and universal quantifiers to the dependent products.

In Chapter A we also write justification that this is indeed a type-
theoretic transformation, i.e. that derivability is preserved.

Similarly to propositions as types we could also use type-theoretic
transformations to formulate propositions as bracketed or squash
types [16, 44, 117, 142]

[16]: Awodey et al. (2004), “Propositions
as [Types]”
[117]: Pfenning (2001), “Intensionality,
Extensionality, and Proof Irrelevance in
Modal Type Theory”
[142]: The Univalent Foundations
Program (2013), Homotopy Type Theory:
Univalent Foundations of Mathematics
[44]: Constable et al. (1986), Implement-
ing mathematics with the Nuprl proof
development system

, which hide the computational content. The
bracket types as proposed in [16] are an example of a type theory
where an introduction rule for a term judgement has an equational
premise. The paper also contains an example of a formula that is
not provable in intuitionistic first-order logic, but its translation is
derivable in the dependent type theory. We can generalise this con-
struction to propositions as 𝑛-types translation (for 𝑛-truncations as
described in the HoTT book [142]

[142]: The Univalent Foundations
Program (2013), Homotopy Type Theory:
Univalent Foundations of Mathematics

). However, for the general modal-
ities the same construction might not be available, as they are not
necessarily closed under Σ-types, which we need to make this a valid
transformation.

While in the above examples we had concrete transformations be-
tween instances of type theories, there are also some more general
examples.

Example 9.3.2 Often a type theory is extended by adding a symbol
to the signature and possibly some rules that involve the newly
added symbol. We can always inject the theory into the extended
one bymapping symbols to their generic applications and the rules
to the generic derivations. This injection is trivially a type-theoretic
transformation.

Often we don’t want to just merely add new symbols, but we want
to make a conservative extension, a super-theory, which proves no
new theorems about the language of the original theory, but is in
some way more convenient for proving theorems. We can make the
notion of conservativity precise for type theories with the following
definition.
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Definition 9.3.3 A transformation of type theories 𝑓 : T → U is
conservative if for every strongly derivable rule-boundary Θ =⇒ b

in T it holds that if 𝑓∗Θ =⇒ 𝑓∗b 𝑒 is derivable in U then we have 𝑒′
such that Θ =⇒ b 𝑒′ is derivable in T.

In the Definition 9.3.3 above we can think of the theory Tas a conser-
vative extension of U, so we have a transformation from the extension
to the original theory. To make sure the theory T indeed captures all
the relevant derivability structure of U it should also be a cover in
the following sense.

Definition 9.3.4 A type-theoretic transformation 𝑓 : T → U is a
cover, if it is surjective on strongly derivable judgements, i.e. for
every strongly derivable judgement Θ;Γ `U J in U there is a judge-
ment Θ′;Γ′ `T J′ such that

𝑓∗(Θ′;Γ′ `T J′) = Θ;Γ `U J.

Example 9.3.5 A typical example of a conservative extension is the
so called definitional extension. Let T be a type theory and let S
be a symbol, that is not is the signature of T. We construct the
definitional extension U of T by adding S:(c, 𝜗) to the signature
and adding two specific rules

` B𝑖 M𝑖 for 𝑖 = 1, . . . , 𝑛

` bS(M̂1 , . . . , M̂𝑛)
` B𝑖 M𝑖 for 𝑖 = 1, . . . , 𝑛

` bS(M̂1 , . . . , M̂𝑛) ≡ 𝑒

forM1 , . . . ,M𝑛 metavariables from themetavariable shape 𝜗, bound-
ariesB1, …,B𝑛 of appropriate arities according to 𝜗 and some valid
expression 𝑒 of the syntactic class c, such that we have a deriva-
tion D of [M1:B1 , . . . ,M𝑛 :B𝑛]; [] ` b 𝑒 in T. The conservative cover
𝑓 : U→ T is defined by

S ↦→ 𝑒

T ↦→ T(M̂1 , . . . , M̂𝑚)
for T symbols from the signature of T (and the signature of U)
and metavariables M1 , . . . ,M𝑚 from the metavariable shape of the
symbol T. The derivations for the specific rules that are common
to T and U are just generic derivations that apply that same rule.
The derivation pertaining the new symbol rule for S is D and we
map the new equality to an application of TT-TM-REFL on 𝑒 . With
this data 𝑓 is type-theoretic transformation.

Furthermore, if we think of 𝑓 as a transformation from Uback to U

it is judgementally equal to the identity transformation idU. Indeed,
𝑓 and idU act the same way on all object specific rules except for
the symbol rule for S, where the defining equation for Smakes sure
we get the necessary judgemental equality.

It is easy to see that 𝑓 is a cover, because it hits all judements of T,
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not just the strongly derivable ones. To prove it is conservative, let
Θ =⇒ b′ be a strongly derivable rule-boundary in U such that
𝑓∗Θ =⇒ 𝑓∗b′ 𝑒′ is derivable in T. Since T is embedded in U, the
judgement 𝑓∗Θ =⇒ 𝑓∗b′ 𝑒′ is also derivable in U. Since 𝑓 is judge-
mentally equal to idU by Corollary 9.1.10 we have that Θ; [] ` b′ 𝑒′
is also derivable, which concludes the argument.

We have seen an example of a definitional extension in the Exam-
ple 9.3.7, where we added a symbol ¬ for negation and its defini-
tional equation to the FOL.

Example 9.3.6 Another example of a conservative cover is the retro-
gression transformation from the elaborated version Sof a finitary
type theory T. The full definition of the elaboration and the retro-
gression transformation are in Chapter 10.

While the propositions as types transformation relates FOL and MLTT,
the usual translations of classical logic to an intuitionistic setting can-
not be expressed as type-theoretic transformations as defined in Def-
inition 9.1.2.

Example 9.3.7 One of the most known translations between log-
ics is the double negation translation that was developed by Kol-
mogorov [83] [83]: Kolmogorov (1925), “On the princi-

ples of excluded middle (Russian)”
, Gödel [62]

[62]: Gödel (1933), “Zur intuitionistis-
chen Arithmetik und Zahlentheorie”

, Gentzen [56, 57, 138]

[57]: Gentzen (1974), “Über das Verhält-
nis zwischen intuitionistischer und
klassischer Arithmetik”
[138]: Szabo (1971), “The Collected
Papers of Gerhard Gentzen”
[56]: Gentzen (1936), “Die Widerspruchs-
freiheit der reinen Zahlentheorie”

, Kuroda [86]

[86]: Kuroda (1951), “Intuitionistische
Untersuchungen der formalistischen
Logik”

and Kriv-
ine [84]

[84]: Krivine (1990), “Opérateurs de mise
en mémoire et traduction de Gödel”

(their versions differ slightly) taking each classical propo-
sition into its double negation and thereby translating a classically
valid formula into an intuitionistically valid one.

It is not immediately obvious that the translation cannot be ex-
presseed in our setting, since the translation is in essence adding
the double negation to disjunctions, existential quantifiers and atom-
ic formulas. In our setting, we can extend the definition of FOL from
the Appendix Chapter A by a symbol ¬ for negation and its defini-
tional rules:

` p : o

` ¬(p) : o

NOT-DEF
` p : o

` ¬(p) ≡ imp(p, false)
We could start the syntactic transformation as follows.

Symbol in FOL Metavariable shape Expression
o [] o

true [p:(Tm, 0)] true(p)
i [] i

conj [p:(Tm, 0), q:(Tm, 0)] conj(p, q)
disj [p:(Tm, 0), q:(Tm, 0)] ¬(¬(disj(p, q)))

exists [P:(Tm, 1)] ¬(¬(exists({𝑥}P(𝑥))))
Atomic [M1:(Tm, 0), . . . ,M𝑛 :(Tm, 0)] ¬(¬(Atomic( ®M)))

The notation ®M is just short for
M1 , . . . ,M𝑛 .

The last row represents how we map atomic formulas (predicates)
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that are in our setting added as new symbols, so we have to double-
negate them as well when extending the transformation. We can
even transform the introduction rules conjI, existsI, disjI1 etc.

The issue lies in the elimination rules disjE and existsE. In the classi-
cal proofs that the double-negation translation translates classical
FOL to intuitionistic one, the derivations using elimination of dis-
junction are translated by identifying all the specific uses of the
law of excluded middle (LEM) and translating those instances sep-
arately. The translation is thus admissible and not derivable as our
notion of type-theoretic transformation requires: the symbols and
specific rules need to be mapped in a generic way, not depending
on their specific instantiations.

Similar to the double negation translation is the 𝐴-translation [55] [55]: Friedman (1978), “Classically and
intuitionistically provably recursive
functions”

,
which fails to be a type-theoretic transformation for a similar rea-
son.

The type-theoretic transformation as a proposed notion of a trans-
formation between type theories preserves quite a bit of the syntac-
tic structure: it preserves syntactic classes of expressions, arities of
metavariables and judgement forms. Such restrictions inevitably ex-
clude several useful translations between type theories.

One such translation is the elimination of equality reflection from in-
tentional type theory, which was implemented byWinterhalter, Sozeau
and Tabareau [152] [152]: Winterhalter et al. (2019), “Elimi-

nating Reflection from Type Theory”
. They translate derivations of ETT into proof terms

of ITT (with uniqueness of identity proofs and function extensionality),
which was first done on a semantic level (categorically) by Hofmann in
1995 [70, 72]

[70]: Hofmann (1996), “Conservativity
of Equality Reflection over Intensional
Type Theory”
[72]: Hofmann (1997), Extensional
Constructs in Intensional Type Theory

, later syntactically by Oury [112]

[112]: Oury (2005), “Extensionality in the
Calculus of Constructions”

and has now been imple-
mented in Coq. The translation is also conservative. Because it works
on derivations and does not preserve judgemental equality, it is not a
type-theoretic transformation in the sense of Definition 9.1.2. A trans-
formation of a similar nature (mapping derivations to judgements) is
the elaboration map from Chapter 10, which is not a type-theoretic
transformation for the same reason.

Preserving judgemental equality is not the only reason, a useful trans-
lation of type theories fails to qualify as a type-theoretic transforma-
tion. A counter-example is the so called functional functional inter-
pretation, a reformulation of the Dialectica interpretation [13, 63] [63]: Gödel (1958), “Über eine bisher

nicht erweiterung des finiten stand-
punktes”
[13]: Avigad et al. (1998), “Gödel’s
Functional Interpretation”

for
dependently-typed calculus, developed by Pédrot [113, 114]

[113]: Pédrot (2014), “A functional
functional interpretation”
[114]: Pédrot (2015), “A Materialist Di-
alectica. (Une Dialectica matérialiste)”

. The trans-
formation preserves judgemental equality, but it does not preserve
variable shapes: variables do not get mapped to variables.

The computational counterpart of the double negation translation,
the continuation passing style translation ([54, 126]

[54]: Fischer (1993), “Lambda-Calculus
Schemata”
[126]: Reynolds (1972), “Definitional
Interpreters for Higher-order Program-
ming Languages”

), fails to be a type-
theoretic transformation for the same reason: we translate a variable
a in a CPS translation to something like λ𝜅.𝜅(a), which is not how
type-theoretic transformations act on variables.

The proposed notion of a type-theoretic transformation is just one
possible version of a transformation between type theories. A more
general notion is needed to cover the above counter-examples as
well. It is likely that such a general notion of a transformation would
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be easier to express in a more general syntax, that deals with vari-
ables, metavariables and symbols in a more uniform way. Another
important generalisation lies in having more than the four proscribed
judgement forms, as there could be several others. Examples are the
interval judgement in the Cubical Type Theory [25, 42, 91]

[42]: Cohen et al. (2015), “Cubical Type
Theory: A Constructive Interpretation of
the Univalence Axiom”
[25]: Bezem et al. (2014), “A Model of
Type Theory in Cubical Sets”
[91]: Licata et al. (2015), “A Cubical Ap-
proach to Synthetic Homotopy Theory”and the two

additional judgement forms for asserting propositions and implica-
tions of propositions in the logic-enriched intuitionistic type theory
of Aczel and Gambino [4] [4]: Aczel et al. (2002), “Collection

Principles in Dependent Type Theory”
. We leave the exploration of such general

transformations for future endeavors.



1: We invite the reader to write a script
in the Andromeda 2 proof assistant to
experience this issue firsthand.

An Elaboration theorem 10.
When designing a type theory, especially for using it in a proof assis-
tant, one often faces a dilemma of how verbose the syntax should
be. Terms annotated with full typing information are easily amenable
to algorithmic processing and have good meta-theoretic properties.
However, the syntax can quickly become too verbose to handle1, so
more economic terms that omit typing information are much more
usable in practice.

One common solution to this problem is to design two type theo-
ries: a fully annotated type theory S that resides in the kernel of the
proof assistant and an economic one T for the users input. The lat-
ter version is then translated to the former via an elaborator i.e., the
missing information is somehow recovered. We can see this process
in practice, for example with Agda’s [5] [5]: (2021), The Agda proof assistantor Coq’s [45]

[45]: (2021), The Coq proof assistant,
version 2021.02.2

inferred implicit
arguments, termination checking [1]

[1]: Abel (1998), foetus - termination
checker for simple functional programs

(where evidence of termination
is added), or universe polymorphism [134]

[134]: Sozeau et al. (2014), “Universe
Polymorphism in Coq”

(where explicit universe
levels are calculated and constraints checked).

Of course we want our economic version Tto be conservative (Defini-
tion 9.3.3) over S, namely that for every derivable type in S, if we can
provide a term of said type in T, there is also a term of the original
type.

In this chapter we use type-theoretic transformations to precisely de-
fine what elaboration is and prove the elaboration theorem (Theo-
rem 10.2.1) which states that every finitary type theory can be elabo-
rated. The second part of the chapter describes a basic relationship
between the algorithmic content of an elaboration to S and type-
checking of T.

Using the vocabulary of finitary type theories, let us explain the in-
tuition behind the elaboration theorem. We can summarize it in the
following diagram.

S T

𝑟

ℓ

We start with a finitary type theory T, which represents the economic
version. The fully-annotated type theory to which we elaborate is a
standard type theory S: indeed by definition of a standard type the-
ory all specific object rules are symbol rules that faithfully record
all the premises. We have a ”forgetful” type-theoretic transformation
𝑟 : S→ T, called the retrogression transformation, which erases the
annotations, but is still conservative. The interesting part is in the
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2: Note that the elaboration map ℓ is
not a type-theoretic transformation as
it does not work syntactically, but relies
on the entire derivations.

3: A type judgement Θ;Γ ` 𝐴 type is
mapped to 𝑟∗Θ; 𝑟∗Γ ` 𝑟∗𝐴 type and simi-
larly for other judgement and boundary
forms.

other direction, the so called elaboration map ℓ , which maps deriva-
tions2 in the finitary type theory T to judgements in the standard
type theory S.

10.1. Elaboration

10.1.1. Definition of elaboration

For elaboration to behave as expected, the retrogression map needs
to preserve enough of the derivability structure, namely it needs to
be conservative (Definition 9.3.3) and a cover (Definition 9.3.4).

Recall that a transformation of type
theories 𝑓 : T → U is conserva-
tive if for every strongly derivable
rule-boundaryΘ =⇒ b in Tit holds
that if 𝑓∗Θ =⇒ 𝑓∗b 𝑒 is derivable in
U then we have 𝑒′ such that Θ =⇒
b 𝑒′ is derivable in T.

Recall that a type-theoretic transfor-
mation 𝑓 : T → U is a cover, if it
is surjective on strongly derivable
judgements.

The other equally important aspect of preserving derivability is whether
derivable judgements of a finitary type theory Thave an elaboration
in the standard type theory S. Since the elaboration map depends
on the derivations, we can hardly expect it to work on every deriv-
able judgement, but rather on every strongly derivable judgement,
because we also need to elaborate the context of the judgement.

With that in mind we provide the elaboration map ℓ that maps deriva-
tions of T to appropriate pieces of syntax of Sand acts like a section
of the retrogression transformation 𝑟. But before we can specify ℓ , we
need to define what a good candidate for such a map is, what pre-
cisely we mean by being a form of a section of 𝑟.

Definition 10.1.1 For a type-theoretic transformation 𝑟 : ΣS → ΣT

form a standard type theory to a finitary type theory an elaboration
candidate is an element of the fiber of 𝑟, specifically

▶ For a metacontext Θ in Tan elaboration candidate is a meta-
context Θ′ over ΣS such that 𝑟∗(Θ′) = Θ.

▶ For metacontexts Θ and Θ′ as above and for a variable con-
text Γ over Θ in Tan elaboration candidate for Γ is a variable
context Γ′ over Θ′ over ΣS such that 𝑟∗(Γ′) = Γ.

▶ For contexts Θ;Γ and Θ′;Γ′ as above and for a boundary B

over Θ;Γ in Tan elaboration candidate for B is a boundary
B′ over Θ′;Γ′ over ΣS such that 𝑟∗(B′) = B.

▶ For contexts Θ;Γ and Θ′;Γ′ and boundaries B and B′ as
above, for a judgement B𝑒 over Θ;Γ in T an elaboration
candidate for B𝑒 is a judgement B′ 𝑒′ over Θ′;Γ′ over ΣS

such that 𝑟∗(𝑒′) = 𝑒 .

Note that since 𝑟 is a syntactic transformation whose action preserves
judgement forms3, the form of an elaboration candidate B′ (or J′) is
the same as the form of B (or J).

An elaboration map for a type-theoretic transformation is a choice
of elaboration candidates based on the derivations it takes as input.
The choice is made in a way that preserves derivability: starting with a
derivation of a judgement in T, the elaboration map gives a derivable
judgement in S. We make this precise in the following definition.
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Definition 10.1.2 Let 𝑟 : S→ T be a type-theoretic transformation
form a standard type theory to a finitary type theory. If the following
holds:

1. If DΘ is a derivation of `T Θ mctx then there is an elaboration
candidate ℓ𝑚(DΘ) for Θ such that

`S ℓ𝑚(DΘ) mctx

is derivable in S.
2. If DΓ is a derivation ofΘ `T Γ vctx andΘ′ is a derivable elabo-

ration candidate for Θ then there is an elaboration candidate
ℓ𝑣(Θ′, DΓ) for Γ such that

Θ′ `S ℓ𝑣(Θ′, DΓ) vctx
is derivable in S.

3. If DB is a derivation of Θ;Γ `T Band Θ′ and Γ′ are derivable
elaboration candidates for Θ and Γ respectively, then there
is an elaboration candidate ℓ𝑏(Θ′, Γ′, DB) for B such that

Θ′;Γ′ `S ℓ𝑏(Θ′, Γ′, DB)
is derivable in S.

4. If DJ is a derivation of Θ;Γ `T B𝑒 and Θ′, Γ′ and B′ are
derivable elaboration candidates for Θ, Γ and B respectively,
then there is an elaboration candidate ℓ 𝑗(Θ′, Γ′,B′, DJ) for
B𝑒 such that

Θ′;Γ′ `S ℓ 𝑗(Θ′, Γ′,B′, DJ)
is derivable in S.

Then we write the partial maps ℓ𝑚 , ℓ𝑣 , ℓ𝑏 and ℓ 𝑗 as ℓ , which we call
the elaboration map of 𝑟.

The sentence “There is an elaboration
candidate” is meant constructively.

We think of the elaboration map ℓ as a section of the retrogression
transformation 𝑟.

Recall that a section of a type-
theoretic transformation 𝑓 : T→ U

is a type-theoretic transformation
𝑠 : U → T such that for every ex-
pression 𝑒 in U it holds that

( 𝑓 ◦ 𝑠)∗𝑒 = 𝑒.However, since ℓ is not a type-theoretic transforma-
tion, but rather a partial map on the derivations of T, it is not really
a section. It takes more information, an entire derivation, to get a
section-like behavior on the conclusion of the derivation.

We now have all the ingredients to give a formal definition of an elab-
oration.

Definition 10.1.3 An elaboration of a finitary type theory T is a
standard type theory S with a conservative type-theoretic trans-
formation 𝑟 : S → T called the retrogression transformation and
an elaboration map ℓ of 𝑟.

We can summarize the concept of an elaboration in the following
diagram.
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S T

𝑟

ℓ

We keep inmind that the retrogression transformation is a type-theoretic
transformation in the sense of Definition 9.1.2, but the elaboration
map is not.

In the Definition 10.1.3 of an elaboration we did not need to specify
that the retrogression map is a cover, because the elaboration map
makes sure of it as seen in the following corollary.

Corollary 10.1.4 The retrogression map 𝑟 : S→ T is a cover.

Proof. Let Θ;Γ `T B𝑒 be a strongly derivable judgement. Then we
have derivations

DΘ of `T Θ mctx
DΓ of Θ `T Γ vctx
DB of Θ;Γ `T B

DJ of Θ;Γ `T B𝑒

where DB by Theorem 5.1.6. By Definition 10.1.2 of the elaborationmap
we get the derivations of

`S ℓ (DΘ) mctx
ℓ (DΘ) `S ℓ (ℓ (DΘ), DΓ) vctx

ℓ (DΘ); ℓ (ℓ (DΘ), DΓ) `S ℓ (ℓ (DΘ), ℓ (ℓ (DΘ), DΓ), DB)
ℓ (DΘ); ℓ (ℓ (DΘ), DΓ) `S ℓ (ℓ (DΘ), ℓ (ℓ (DΘ), DΓ), ℓ (ℓ (DΘ), ℓ (ℓ (DΘ), DΓ), DB), DJ)
which are elaboration candidates forΘ, Γ,BandB𝑒 respectively.

Another important observation is that conservativity is enough of
a restriction on the retrogression transformation 𝑟, that we do not
have much choice when defining the elaboration map ℓ because it is
unique up to judgemental equality on strongly derivable judgements.
To prove that, we need the folowing lemma about conservative trans-
formations.

Both b′ 𝑒′ and b′′ 𝑒′′ are in the same
context Θ′;Γ′.

Lemma 10.1.5 Let 𝑓 : U→ Vbe a conservative type-theoretic trans-
formation between type theories U and V. Suppose

Θ;Γ `V b 𝑒

is a strongly derivable object judgement in Vand

Θ′;Γ′ `U b′ 𝑒′ and Θ′;Γ′ `U b′′ 𝑒′′
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are strongly derivable object judgements in U such that

𝑓∗(Θ′;Γ′ `U b′ 𝑒′ ) = 𝑓∗(Θ′;Γ′ `U b′′ 𝑒′′ ) = Θ;Γ `V b 𝑒 .

Then the equation

Θ′;Γ′ `U b′ 𝑒′ ≡ 𝑒′′ by ★

is strongly derivable in U.

Proof. By assumption contexts Θ;Γ and Θ′;Γ′ are derivable. We pro-
mote the variable context Γ to a metavariable context using Proposi-
tion 4.3.6 to get a strongly derivable judgement

Ξ; [] `V b 𝑒

for Ξ = (Θ, Γ). Similarly we get that

Ξ′; [] `U b′ 𝑒′ and Ξ′; [] `U b′′ 𝑒′′

are also derivable for Ξ′ = (Θ′, Γ′). Since b is an object boundary we
consider the following two cases:

▶ if b = □ type: the judgement

Ξ; [] `V 𝑒 ≡ 𝑒 by ★

is derivable by the rule TT-TY-REFL. Conservativity of 𝑓 with strongly
derivable boundary

Ξ′; [] `U 𝑒′ ≡ 𝑒′′ by □

gives us the derivability of the corresponding judgement. Propo-
sition 4.3.6 gives us the desired judgement

Θ′;Γ′ `U 𝑒′ ≡ 𝑒′′ by ★.

▶ if b = □ : 𝐴: let b′ = □ : 𝐴′ and b′′ = □ : 𝐴′′. The judgement

Ξ′; [] `V 𝐴′ ≡ 𝐴′′ by ★

is derivable by the rule TT-TY-REFL on 𝐴 and conservativity of 𝑓 .
We can therefore convert 𝑒′′ to the type 𝐴′. We again use con-
servativity of 𝑓 , this time with the strongly derivable boundary

Ξ′; [] `U 𝑒′ ≡ 𝑒′′ : 𝐴′ by □

to get the derivability of the corresponding judgement. Proposi-
tion 4.3.6 gives us the desired judgement

Θ′;Γ′ `U 𝑒′ ≡ 𝑒′′ : 𝐴′ by ★.

Corollary 10.1.6 The elaboration map ℓ for a retrogression transfor-
mation 𝑟 : S→ T is unique up to judgemental equality: Suppose
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DJ is a derivation of
Θ;Γ `T b 𝑒

where b is an object boundary, Θ′;Γ′ is an elaboration candidate
for context Θ;Γ and b′ is an elaboration candidate for b. If

Θ′;Γ′ `S b′ 𝑒′

is strongly derivable and 𝑟∗(𝑒′) = 𝑒 , then for

b′ 𝑒′′ = ℓ (Θ′, Γ′, b′, DJ)
the equation

Θ′;Γ′ `S b′ 𝑒′ ≡ 𝑒′′ by ★.

is also derivable.

Note that strong derivability of Θ′;Γ′ `S
b′ 𝑒′ implies that the contextΘ;Γ is also
derivable, because 𝑟 is a type-theoretic
transformation that preserves derivabil-
ity.

Proof. The proof is a direct application of Lemma 10.1.5.

10.1.2. The universal property of elaboration

For a finitary type theory T every elaboration as defined in Defini-
tion 10.1.3 is equivalent in the sense of the following universal prop-
erty.

Theorem 10.1.7 (The universal property of elaboration) Let T be
a finitary type theory and (S1 , 𝑟1 , ℓ1) and (S2 , 𝑟2 , ℓ2) elaborations
of T. Then there exists a conservative type-theoretic transforma-
tion 𝑓 : S1 → S2 with an elaboration map ℓ 𝑓 : S2 → S1 such that
𝑟2 ◦ 𝑓 = 𝑟1 and 𝑓 is unique up to judgemental equality.

Proof. The situation is summarized by the following diagram:

S1 S2

T

𝑓

𝑟1
ℓ 𝑓

𝑟2
ℓ1

ℓ2

We need to construct a type theoretic transformation 𝑓 such that the
diagram commutes. We know that S1 and S2 are standard type theo-
ries, so they have just symbol rules and equality rules as their specific
rules. Let S1 = (𝑅𝑖)𝑖∈I and I is ordered with a well-founded order ⊏.
We build the transformation 𝑓 inductively on the order ⊏.

Suppose Ξ = [M1:B1 , . . . ,M𝑛 :B𝑛] and 𝑅𝑖 = Ξ =⇒ b 𝑒 is a specific rule
of S1 and we have already defined the type-theoretic transformation
𝑓 : S𝑖1 → S2, where S𝑖1 is the fragment of S1 defined by the index
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set ↓ 𝑖 = { 𝑗 | 𝑗 ⊏ 𝑖} and with the signature containing only the
symbols that have a symbol rule in the fragment. We want to extend
the definition of 𝑓 .

Since S1 is a finitary type theory `S𝑖1 Ξ mctx and Ξ; [] `S𝑖1 b are deriv-
able in S𝑖1, so `S2 𝑓∗Ξ mctx and 𝑓∗Ξ; [] `S2 𝑓∗b are also derivable and

(𝑟2)∗( 𝑓∗Ξ; [] `S2 𝑓∗b) = (𝑟1)∗Ξ; [] `T (𝑟1)∗b.
Because 𝑟1 is a type-theoretic transformation it maps 𝑅𝑖 to a deriva-
tion D in T. We consider the cases for an object rule and an equality
rule:

▶ If 𝑒 = S(M̂1 , . . . , M̂𝑛), let 𝑒S be the expression determined by

( 𝑓∗b) 𝑒S = ℓ2( 𝑓∗Ξ, [], 𝑓∗b, D).
We set

𝑓 (S) = 𝑒S.

Because elaboration map ℓ2 preserves derivability of strongly
derivable judgements we can obtain a derivation D′ of

𝑓∗Ξ; [] `S2 ( 𝑓∗b) 𝑒S
so we set 𝑓 to map the rule 𝑅𝑖 to the derivation D′.

▶ If 𝑒 = ★, then again because elaboration map ℓ2 preserves deriv-
ability of strongly derivable judgements we can obtain a deriva-
tion D′ of

𝑓∗Ξ; [] `S2 ( 𝑓∗b)★
and we set 𝑓 to map the rule 𝑅𝑖 to the derivation D′.

With this data the extended 𝑓 is indeed a type-theoretic transforma-
tion and also

(𝑟2)∗( 𝑓 (S)) = (𝑟2)∗(𝑒S) = (𝑟1)∗(S(M̂1 , . . . , M̂𝑛)) = 𝑟1(S).
At the last step we use the fact that ac-
tion of a transformation on a generically
applied metavaraible does nothig.

By induction we get a type-theoretic transformation 𝑓 : S1 → S2. To
show it is conservative suppose Θ;Γ `S1 b is a strongly derivable
boundary in S1 such that

𝑓∗Θ; 𝑓∗Γ `S2 ( 𝑓∗b) 𝑒
is derivable in S2. Then

(𝑟2)∗( 𝑓∗Θ); (𝑟2)∗( 𝑓∗Γ) `T (𝑟2)∗(( 𝑓∗b) 𝑒 )
is strongly derivable in Twith some derivation D. Since elaboration
map ℓ1 preserves derivability the judgement

Θ;Γ `S1 bℓ1(Θ;Γ, b, D)
is derivable thus proving conservativity.

The elaboration map ℓ 𝑓 maps a derivation D in S2 to ℓ1((𝑟2)∗D). To
be more precise, for a strogny derivable judgement Θ;Γ `S2 B𝑒 in S2
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and Θ′, Γ′ and B′ such that

𝑓∗Θ′ = Θ 𝑓∗Γ′ = Γ 𝑓∗B′ = B

we define
ℓ 𝑓 (Θ′, Γ′,B′, D) = ℓ1(Θ′, Γ′,B′, (𝑟2)∗D)

and similarly for contexts and boundaries. The elaboration map ℓ 𝑓
preserves derivability because both 𝑟2 and ℓ1 do so.

To prove that 𝑓 is unique up to judgemental equality, suppose there
is another type-theoretic tranformation 𝑔 : S1 → S2 with an elabora-
tion map ℓ𝑔 , such that 𝑟2 ◦ 𝑔 = 𝑟1. Since S1 is a standard type theory,
object rules of S1 are symbol rules and we prove that 𝑓 and 𝑔 are
judgementally equal (Definition 9.1.5) by induction on the ordering of
the rules.

Suppose Ξ = [M1:B1 , . . . ,M𝑛 :B𝑛] and 𝑅𝑖 = Ξ =⇒ bS(M̂1 , . . . , M̂𝑛) is
a symbol rule of S1 and we have already established that 𝑓 and 𝑔,
restricted to the fragment S𝑖1 are judgementally equal, where S𝑖1 is the
fragment of S1 defined by the index set ↓ 𝑖 = { 𝑗 | 𝑗 ⊏ 𝑖} and with the
signature containing only the symbols that have a symbol rule in the
fragment. We want to derive

𝑓∗Ξ; [] `S2 ( 𝑓∗b) 𝑓 (S) ≡ 𝑔(S)
Since Ξ; [] `S1 b is derivable in S1 and on this fragment 𝑓 and 𝑔 are
judgementally equal, by Lemma 9.1.9 the instantiation

𝐼 = 〈M1 ↦→M̂1 , . . . ,M𝑛 ↦→M̂𝑛〉
of 𝑔∗Ξ over 𝑓∗Ξ; [] is derivable so we can act with 𝐼 on the derivable
judgement 𝑔∗Ξ; [] `S2 (𝑔∗b) 𝑔(S) to obtain a derivation of 𝑓∗Ξ; [] `S2
(𝑔∗b) 𝑔(S) . We conclude the proof by using Lemma 10.1.5 with the
derivable judgements 𝑓∗Ξ; [] `S2 ( 𝑓∗b) 𝑓 (S) and 𝑓∗Ξ; [] `S2 (𝑔∗b) 𝑔(S) .

The roles of S1 and S2 in Theorem 10.1.7 are symmetric, the standard
type theories S1 and S2 are elaborations of each other. Also note that
by Corollary 10.1.4 the type-theoretic transformation 𝑓 is a cover.

10.2. The elaboration theorem

The universal property of elaboration tells us that all elaborations of
a finitary type theory are equivalent, if they exist. We can now give the
formal statement of the elaboration theorem, taking us a step further
as it ensures the existence of elaborations.

Theorem 10.2.1 (The Elaboration Theorem) Every finitary type theory
has an elaboration.

The rest of the section is dedicated to proving the elaboration theo-
rem by constructing an elaboration for finitary type theories.
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We fix a finitary type theory T and let I be the indexing set for the
specific rules of T ordered by the well-found order ⊏. We need to
construct a standard type theory S and a retrogression transforma-
tion 𝑟 : S→ T.

10.2.1. Syntactic part of elaboration S

First, we make a signature ΣS induced by the object rules of T. For
every specific object rule 𝑅𝑖 = Θ =⇒ b 𝑒 indexed by 𝑖 in the theory
Twe introduce a symbol

S(
𝑖 ,Θ=⇒b 𝑒

)
with arity (cl(b), ar(Θ)).
We can now define the syntactic part of the retrogression transforma-
tion

𝑟 : ΣS → ΣT

as follows: if 𝑅𝑖 = Θ =⇒ b 𝑒 is an object rule of T, then

𝑟(S(
𝑖 ,Θ=⇒b 𝑒

) ) = 𝑒.

This gives a syntactic transformation. To check that 𝑟 is indeed a type-
theoretic transformation we first need to give rules for the type the-
ory S. For that we inductively define the syntactic part of the elabora-
tion map ℓ for 𝑟 with the help of the following auxiliary notions.

Definition 10.2.2 For the retrogression transformation 𝑟 : ΣS → ΣT

as above and for a specific object rule 𝑅𝑖 = Θ =⇒ b 𝑒 in Twith

Θ = [M1:B1 , . . . ,M𝑛 :B𝑛]
an elaboration candidate for 𝑅𝑖 is a well-formed judgement

[M1:B′
1 , . . . ,M𝑛 :B′

𝑛]; [] ` b′S(
𝑖 ,Θ=⇒b 𝑒

) (M̂1 , . . . , M̂𝑛)

such that

𝑟∗(B′
𝑗) = B𝑗 for 𝑗 = 1, . . . , 𝑛

𝑟∗(b′) = b

We call a fragment Tfr of the theory T an elaborative fragment if
every specific object rule of Tfr has a chosen elaboration candi-
date.

We do not need to define elaboration candidates for equality rules,
because the head of an equality judgement is just ★ and since 𝑟
preserves judgement forms we know what the elaboration candidate
is.

The next lemma constructs the syntactic part of the elaboration map
for 𝑟.
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Lemma 10.2.3 The following statements hold.

1. Let 𝑖 ∈ I such that the fragment T𝑖 of T= (𝑅 𝑗)𝑗∈I induced by
the index set ↓ 𝑖 = { 𝑗 ∈ I | 𝑗 ⊏ 𝑖} is an elaborative fragment
of T. Then there is an elaboration candidate 𝑅′

𝑖 for 𝑅𝑖 .
2. Let Tfr be an elaborative fragment of T.

a) If DΘ is a derivation of `Tfr Θ mctx then there is an elab-
oration candidate ℓ𝑚(DΘ) for Θ.

b) If DΓ is a derivation of Θ `Tfr Γ vctx and Θ′ is an elabo-
ration candidate for Θ then there is an elaboration can-
didate ℓ𝑣(Θ′, DΓ) for Γ.

c) If DB is a derivation of Θ;Γ `Tfr B and Θ′ and Γ′ are
elaboration candidates for Θ and Γ respectively, then
there is an elaboration candidate ℓ𝑏(Θ′, Γ′, DB) for B.

d) If DJ is a derivation of Θ;Γ `Tfr B𝑒 and Θ′, Γ′, B′
are elaboration candidates for Θ, Γ, B respectively, then
there is an elaboration candidate ℓ 𝑗(Θ′, Γ′,B′, DJ) forJ.

e) If DJ is a derivation of Θ;Γ `Tfr J and Θ′ and Γ′ are
elaboration candidates for Θ and Γ respectively, then
there is an elaboration candidate ℓ 𝑗𝑏(Θ′, Γ′, DJ) for J.

The partial map ℓ 𝑗𝑏 is not a part of Def-
inition 10.1.2. However, we include it
to help with induction, as sometimes
the expected boudary is not provided.
Specifically, when converting a term us-
ing TT-CONV-TM along some equation
𝐴 ≡ 𝐵, there is no provided elaboration
candidate for the type 𝐴 , but we can
still compute it from the derivation. The
index in ℓ 𝑗𝑏 stands for “judgement and
boundary” as it provides both elabora-
tion candidates.

Proof. We construct ℓ by mutual recursion on all five parts of the
lemma.

Part (1): Let 𝑅𝑖 = (Θ =⇒ b 𝑒 ) be a specific rule in the theory T and
T𝑖 an elaborative fragment of T induced by the index set

↓ 𝑖 = { 𝑗 ∈ I | 𝑗 ⊏ 𝑖}.
Since T is finitary, the rule 𝑅𝑖 is finitary with respect to T𝑖 , so we have
derivations

D1

`T𝑖 Θ mctx

D2

Θ; [] `T𝑖 b

By induction hypothesis with the fragment T𝑖 we have elaboration
candidates

Θ′ = ℓ𝑚

(
D1

`T𝑖 Θ mctx

)
b′ = ℓ𝑏

(
Θ′, [], D2

Θ; [] `T𝑖 b

)
We consider the following two cases:

▶ If 𝑅𝑖 is an equality rule, we define

𝑅′
𝑖 = (Θ′ =⇒ b′★ )

which is a suitable elaboration candidate by the following equa-
tion:

𝑟∗(𝑅′
𝑖) = 𝑟∗(Θ′ =⇒ b′★ ) = (𝑟∗Θ′ =⇒ (𝑟∗b′) 𝑟∗★ ) = 𝑅𝑖 .
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▶ If 𝑅𝑖 is an object specific rule, we define

𝑅′
𝑖 = (Θ′ =⇒ b′S(

𝑖 ,Θ=⇒b 𝑒
) )

which is a suitable elaboration candidate for the rule 𝑅𝑖 be-
cause 𝑟∗(S(

𝑖 ,Θ=⇒b 𝑒
) ) = 𝑒 .

Part (2): SupposeTfr is an elaborative fragment forT. All the following
judgements and derivations of the proof are made in this fragment,
unless specified otherwise. For clarity we leave out the annotations
`Tfr on the judgements.

Part (2a): Suppose we have a derivation DΘ of a metacontext Θ. We
consider cases depending on this derivation.

Case MCTX-EMPTY: We define ℓ𝑚(DΘ) = [], for which the equation

𝑟∗(ℓ𝑚(DΘ)) = []
holds trivially.

Case MCTX-EXTEND: The derivation ends in

D1

` Ξ mctx

D2

Ξ; [] ` B
M ∉ |Ξ|

` 〈Ξ,M:B〉 mctx

By induction hypothesis on the first premise we have an elaboration
candidate

Ξ′ = ℓ𝑚

(
D1

` Ξ mctx

)
.

Induction hypothesis on the second premise for elaboration candi-
dates Ξ′ and [] gives us an elaboration candidate for B:

B′ = ℓ𝑏

(
Ξ′, [],

(
D2

Ξ; [] ` B

))
.

We define
ℓ𝑚(DΘ) = 〈Ξ′,M:B′〉

and we check the equation

𝑟∗(ℓ𝑚(DΘ)) = 𝑟∗(〈Ξ′,M:B′〉) = 〈𝑟∗Ξ′,M:𝑟∗B′〉 = 〈Ξ,M:B〉.
which shows that ℓ𝑚(DΘ) is indeed an elaboration candidate for Θ.

Part (2b): Suppose we have a derivation D of a variable context over
a metacontext Θ and an elaboration candidate Θ′ for Θ. We again
consider cases for the derivation of the variable context.

Case VCTX-EMPTY:

We define ℓ𝑣(Θ′, D[]) = [], for which the equation

𝑟∗(ℓ𝑣(Θ′, D[])) = []
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holds trivially.

Case VCTX-EXTEND: The derivation ends with

D1

Θ ` Γ vctx

D2

Θ, Γ ` 𝐴 type
a ∉ |Γ|

Θ ` 〈Γ, a:𝐴〉 vctx

By induction hypothesis on the first premise we have an elaboration
candidate for Γ

Γ′ = ℓ𝑣

(
Θ′,

(
D1

Θ ` Γ vctx

))
.

Induction on the second premise with Θ′ and Γ′ gives us an elabora-
tion candidate for Θ;Γ ` 𝐴 type

𝐴′ type = ℓ 𝑗

(
Θ′, Γ′,□ type,

D2

Θ, Γ ` 𝐴 type

)
We define

ℓ𝑣(Θ′, DΓ) = 〈Γ′, a:𝐴′〉
and we check the equation

𝑟∗(ℓ (DΓ)) = 𝑟∗(〈Γ′, a:𝐴′〉) = 〈𝑟∗Γ′, a:𝑟∗𝐴′〉 = 〈Γ, a:𝐴〉.
verifying that ℓ𝑣(Θ′, D) is indeed an elaboration candidate.

Part (2c): Suppose we have a derivation DB of a boundary Θ;Γ `
B and an elaboration candidate Θ′;Γ′ for Θ;Γ. We consider several
cases depending on how the derivation DB ends.

Cases TT-BDRY-TY, TT-BDRY-TM, TT-BDRY-EQTY or TT-BDRY-EQTM: It is a
direct use of the induction hypothesis. Let us take a look at TT-BDRY-
EQTM as an example. The derivation DB ends with

D1

Θ;Γ ` 𝐴 type

D2

Θ;Γ ` 𝑠 : 𝐴
D3

Θ;Γ ` 𝑡 : 𝐴
Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴 by □

By induction hypothesis with Θ′;Γ′ we get elaboration candidates

ℓ 𝑗

(
Θ′, Γ′,□ type

D1

Θ;Γ ` 𝐴 type

)
= 𝐴′ type

ℓ 𝑗

(
Θ′, Γ′,□ : 𝐴′,

D1

Θ;Γ ` 𝑠 : 𝐴

)
= 𝑠′ : 𝐴′

ℓ 𝑗

(
Θ′, Γ′,□ : 𝐴′,

D1

Θ;Γ ` 𝑡 : 𝐴

)
= 𝑡′ : 𝐴′

We define
ℓ𝑏(Θ′, Γ′, DB) = 𝑠′ ≡ 𝑡′ : 𝐴′ by □

which is a boundary elaboration candidate for B.
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Case TT-BDRY-ABSTR: The derivation DB ends with

D1

Θ;Γ ` 𝐴 type
a ∉ |Γ| D2

Θ;Γ, a:𝐴 ` B′[a/𝑥]
Θ;Γ ` {𝑥:𝐴} B′

By induction hypothesis on the first premise with Θ′;Γ′ we get an
elaboration candidate

𝐴′ type = ℓ 𝑗

(
Θ′, Γ′,□ type,

D1

Θ;Γ ` 𝐴 type

)
.

Since a is not in Γ, it also holds that a ∉ Γ′. Induction hypothesis on
the third premise with Θ and 〈Γ′, a:𝐴′〉 we get an elaboration candi-
date for B′[a/𝑥]

B′′ = ℓ𝑏

(
Θ′, 〈Γ′, a:𝐴′〉, D2

Θ;Γ, a:𝐴 ` B′[a/𝑥]

)
.

We define
ℓ𝑏 (Θ′, Γ′, D) = {𝑥:𝐴′}B′′[𝑥/a]

and check the equation

𝑟∗({𝑥:𝐴′}B′′[𝑥/a]) = {𝑥:𝑟∗(𝐴′)}𝑟∗(B′′[𝑥/a]) = {𝑥:𝐴}B′.

Part (2d): Suppose we have a derivation DJ of a judgementΘ;Γ ` B𝑒
and elaboration candidates Θ′, Γ′, B′ for Θ, Γ, B respectively. We
consider several cases depending on how the derivation DJ ends.

Case TT-ABSTR: The construction is similar to the case TT-BDRY-ABSTR.
The derivation DJ ends with

D1

Θ;Γ ` 𝐴 type
a ∉ |Γ| D2

Θ;Γ, a:𝐴 ` (B′′[a/𝑥]) 𝑒′[a/𝑥]
Θ;Γ ` {𝑥:𝐴} B′′ 𝑒′

The boundary B′ is then an elaboration candidate for {𝑥:𝐴} B′′ and
because 𝑟 preserves forms of boundaries B′ = {𝑥:𝐴′} B′′′, where
B′′′ is an elaboration candidate for b′′[a/𝑥] in context Θ′;Γ′, a:𝐴′. By
induction hypothesis on the last premise we obtain

B′′′ 𝑒′′ = ℓ 𝑗

(
Θ′, 〈Γ′, a:𝐴′〉,B′′′,

D2

Θ;Γ, a:𝐴 ` (B′′[a/𝑥]) 𝑒′[a/𝑥]

)
and we set

ℓ 𝑗(Θ′, Γ′,B′, DJ) = B′ {𝑥}(𝑒′′[𝑥/a]) .
This is a valid elaboration candidate for B𝑒 because

𝑟∗({𝑥}𝑒′[𝑥/a]) = {𝑥}𝑟∗(𝑒′[𝑥/a]) = {𝑥}(𝑒[a/𝑥])[𝑥/a] = {𝑥}𝑒.
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Case TT-VAR: The elaboration candidate is ℓ 𝑗(Θ′, Γ′,B′, DJ) = a : Γ′(𝑎).
Since the names of the variable in a variable context are preserved
with the syntactic transformation 𝑟 and Γ′ is an elaboration candidate
for Γ, this is a well-formed judgement in the context Γ′.

Cases TT-TY-REFL, TT-TM-REFL, TT-TY-SYM, TT-TM-SYM, TT-TY-TRAN, TT-TM-
TRAN, TT-CONV-EQ, TT-META-CONGR: We define the desired elaboration
candidate

ℓ 𝑗(Θ′, Γ′,B′, DJ) = B′★ .

Cases TT-CONV-TM: The derivation DJ ends with

D1

Θ;Γ ` 𝑡 : 𝐴
D2

Θ;Γ ` 𝐴 ≡ 𝐵

Θ;Γ ` 𝑡 : 𝐵

By induction hypothesis with Part (2e) on the first premise we obtain
the elaboration candidate for 𝑡 : 𝐴

𝑡′ : 𝐴′ = ℓ 𝑗𝑏

(
Θ′, Γ′,

D1

Θ;Γ ` 𝑡 : 𝐴

)

and we define
ℓ 𝑗(Θ′, Γ′,B′, DJ) = B′ 𝑡′

which is the desired elaboration candidate.

Cases TT-META: The derivation DJ ends with

Θ(M𝑘) = {𝑥1:𝐴1} · · · {𝑥𝑚 :𝐴𝑚} b

D𝑗

Θ;Γ ` 𝑡 𝑗 : 𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)]
for 𝑗 = 1, . . . , 𝑚

D′

Θ;Γ ` b[®𝑡/®𝑥]
Θ;Γ ` (b[®𝑡/®𝑥])M𝑘(®𝑡)

SinceM𝑘 is also in the domain ofΘ′, letΘ′(M𝑘) = {𝑥1:𝐴′
1} · · · {𝑥𝑚 :𝐴′

𝑚}b′.
By induction hypothesis we get

𝑡′𝑗 : 𝐴
′
𝑗[®𝑡′(𝑗)/®𝑥(𝑗)] = ℓ 𝑗

(
Θ′, Γ′,□ : 𝐴′

𝑗[®𝑡′(𝑗)/®𝑥(𝑗)],
D𝑗1

Θ;Γ ` 𝑡 𝑗 : 𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)]

)
for 𝑗 = 1, . . . , 𝑚

We define
ℓ 𝑗(Θ′, Γ′,B′, DJ) = (B′)M𝑘(®𝑡′)

which is a good elaboration candidate.

Case Specific rule: Here we have to pay attention to the fragment in
which the judgement happens: the derivation DJ is in an elaborative
fragment Tfr of T. Suppose the derivation DJ ends with a specific



10. An Elaboration theorem 84

rule 𝑅 = [M1:B1 , . . . ,M𝑛 :B𝑛] =⇒ j with a derivable (in Tfr) instan-
tiation 𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉 over Θ;Γ. By (1) we have an elabo-
ration candidate 𝑅′ = [M1:B′

1 , . . . ,M𝑛 :B′
𝑛] =⇒ b′ 𝑒′ for 𝑅. Since 𝐼 is

derivable, we have derivations

D𝑖

Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖
for 𝑖 = 1, . . . , 𝑛.

By induction hypothesis we have elaboration candidates over Θ′;Γ′
for those derivable judgements:

𝐼′(𝑖)∗B
′
𝑖 𝑒

′
𝑖 = ℓ 𝑗

(
Θ′, Γ′, 𝐼′(𝑖)∗B

′
𝑖 ,

D𝑖

Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖

)
for 𝑖 = 1, . . . , 𝑛 where

𝐼′ = 〈M1 ↦→𝑒′1 , . . . ,M𝑛 ↦→𝑒′𝑛〉
and we define the elaboration candidate for DJ to be

ℓ 𝑗(Θ, Γ,B′, DJ) = B′ 𝐼′∗𝑒′ .

Since the equations 𝑟∗(𝑅′) = 𝑅 and 𝑟∗(𝐼′) = 𝐼 hold, we get the desired
equation by Lemma 8.3.3.

Part (2e): Suppose we have a derivation DJ of a judgement Θ;Γ `
J and an elaboration candidate Θ′;Γ′ for Θ;Γ. We consider several
cases depending on how the derivation DJ ends.

Case TT-ABSTR: The construction is similar to the case TT-BDRY-ABSTR.

Case TT-VAR: The elaboration candidate is ℓ 𝑗𝑏(Θ′, Γ′, DJ) = a : Γ′(𝑎).
Since the names of the variable in a variable context are preserved
with the syntactic transformation 𝑟 and Γ′ is an elaboration candidate
for Γ, this is a well-formed judgement in the context Γ′.

Cases TT-TY-REFL, TT-TM-REFL, TT-TY-SYM, TT-TM-SYM: It is a direct appli-
cation of the induction hypothesis. We take a look at the TT-TM-REFL
case. The derivation DJ ends with

D1

Θ;Γ ` 𝑡 : 𝐴
Θ;Γ ` 𝑡 ≡ 𝑡 : 𝐴

By induction hypothesis with Θ′;Γ′ we get an elaboration candidate

𝑡′ : 𝐴′ = ℓ 𝑗𝑏

(
Θ′, Γ′,

D1

Θ;Γ ` 𝑡 : 𝐴

)
and we define the desired elaboration candidate

ℓ 𝑗𝑏(Θ′, Γ′, DJ) = 𝑡′ ≡ 𝑡′ : 𝐴′.
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Cases TT-TY-TRAN and TT-TM-TRAN: We just take a look at the term
equality case. The type equality case is similar. The derivation DJ

ends with
D1

Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴
D2

Θ;Γ ` 𝑡 ≡ 𝑢 : 𝐴

Θ;Γ ` 𝑠 ≡ 𝑢 : 𝐴

By induction hypothesis with Θ′;Γ′ we get

𝑠′ ≡ 𝑡′ : 𝐴′ = ℓ 𝑗𝑏

(
Θ′, Γ′,

D1

Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴

)
𝑡′′ ≡ 𝑢′ : 𝐴′′ = ℓ 𝑗𝑏

(
Θ′, Γ′,

D2

Θ;Γ ` 𝑡 ≡ 𝑢 : 𝐴

)
and we define

ℓ 𝑗𝑏(Θ′, Γ′, DJ) = 𝑠′ ≡ 𝑢′ : 𝐴′

which is indeed an appropriate elaboration candidate.

We again have more than one option
to choose the type of the equality, but
all options turn out to be judgementally
equal by Corollary 10.1.6. Furthermore in
the definition of the elaboration candi-
date we do not need to use the interme-
diate term 𝑡′ (or 𝑡′′).

Cases TT-CONV-TM, TT-CONV-EQ: Both cases proceed in a similar fash-
ion, we consider the case for TT-CONV-EQ. The derivation DJ ends
with

D1

Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴
D2

Θ;Γ ` 𝐴 ≡ 𝐵

Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐵
By induction hypothesis we obtain elaboration candidates

𝑠′ ≡ 𝑡′ : 𝐴′ = ℓ 𝑗𝑏

(
Θ′, Γ′,

D1

Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴

)
𝐴′′ ≡ 𝐵′ = ℓ 𝑗𝑏

(
Θ′, Γ′,

D2

Θ;Γ ` 𝐴 ≡ 𝐵

)

and we define
ℓ 𝑗𝑏(Θ′, Γ′, DJ) = 𝑠′ ≡ 𝑡′ : 𝐵′

which is the desired elaboration candidate.

Cases TT-META, TT-META-CONGR: Both cases proceed in the same way.
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We take a look at TT-META-CONGR. The derivation DJ ends with

Θ(M𝑘) = {𝑥1:𝐴1} · · · {𝑥𝑚 :𝐴𝑚} b

D𝑗1

Θ;Γ ` 𝑠 𝑗 : 𝐴 𝑗[®𝑠(𝑗)/®𝑥(𝑗)]
for 𝑗 = 1, . . . , 𝑚

D𝑗2

Θ;Γ ` 𝑡 𝑗 : 𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)]
for 𝑗 = 1, . . . , 𝑚

D𝑗3

Θ;Γ ` 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐴 𝑗[®𝑠(𝑗)/®𝑥(𝑗)]
for 𝑗 = 1, . . . , 𝑚

D4

Θ;Γ ` 𝐶[®𝑠/®𝑥] ≡ 𝐶[®𝑡/®𝑥] if b = (□ : 𝐶)

Θ;Γ ` (b[®𝑠/®𝑥])M𝑘(®𝑠) ≡ M𝑘(®𝑡)
SinceM𝑘 is also in the domain ofΘ′, letΘ′(M𝑘) = {𝑥1:𝐴′

1} · · · {𝑥𝑚 :𝐴′
𝑚}b′.

By induction hypothesis we get

𝑠′𝑗 : 𝐴
1
𝑗 = ℓ 𝑗𝑏

(
Θ′, Γ′,

D𝑗1

Θ;Γ ` 𝑠 𝑗 : 𝐴 𝑗[®𝑠(𝑗)/®𝑥(𝑗)]

)
for 𝑗 = 1, . . . , 𝑚

𝑡′𝑗 : 𝐴
2
𝑗 = ℓ 𝑗𝑏

(
Θ′, Γ′,

D𝑗2

Θ;Γ ` 𝑡 𝑗 : 𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)]

)
for 𝑗 = 1, . . . , 𝑚

𝑠′′𝑗 ≡ 𝑡′′𝑗 : 𝐴3
𝑗 = ℓ 𝑗𝑏

(
Θ′, Γ′,

D𝑗3

Θ;Γ ` 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐴 𝑗[®𝑠(𝑗)/®𝑥(𝑗)]

)
for 𝑗 = 1, . . . , 𝑚

We define

ℓ 𝑗𝑏(Θ′, Γ′, DJ) = (b′[®𝑠′/®𝑥])M𝑘(®𝑠′) ≡ M𝑘(®𝑡′)
We only use ®𝑠′ and ®𝑡′ in the definition
and not ®𝑠′′ or ®𝑡′′ which turn out to be
judgementally equal to ®𝑠′ and ®𝑡′ respec-
tively.

and we check that this is a good elaboration candidate:

𝑟∗((b′[®𝑠′/®𝑥])M𝑘(®𝑠′) ≡ M𝑘(®𝑡′) )
= (𝑟∗b′[(𝑟∗®𝑠′)/®𝑥])M𝑘(𝑟∗®𝑠′) ≡ M𝑘(𝑟∗®𝑡′)

= (b[®𝑠′/®𝑥])M𝑘(®𝑠) ≡ M𝑘(®𝑡) .

Case Specific rule: Here we have to pay attention to the fragment in
which the judgement happens: the derivation DJ is in an elaborative
fragment Tfr of T. Suppose the derivation DJ ends with a specific
rule 𝑅 = [M1:B1 , . . . ,M𝑛 :B𝑛] =⇒ jwith a derivable (in Tfr) instantia-
tion 𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉 overΘ;Γ. By (1) we have an elaboration
candidate 𝑅′ for 𝑅. Since 𝐼 is derivable, we have derivations

D𝑖

Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖
for 𝑖 = 1, . . . , 𝑛.

By induction hypothesis we have elaboration candidates over Θ′;Γ′
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for those derivable judgements:

B′
𝑖 𝑒

′
𝑖 = ℓ 𝑗𝑏

(
Θ′, Γ′,

D𝑖

Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖

)
for 𝑖 = 1, . . . , 𝑛. We define an instantiation

𝐼′ = 〈M1 ↦→𝑒′1 , . . . ,M𝑛 ↦→𝑒′𝑛〉
and we define the elaboration candidate for D to be

ℓ 𝑗𝑏(Θ, Γ, DJ) = 𝐼′∗𝑅′.

Since the equations 𝑟∗(𝑅′) = 𝑅 and 𝑟∗(𝐼′) = 𝐼 hold, we get the desired
equation by Lemma 8.3.3.

From now on we write partial maps ℓ𝑚 , ℓ𝑣 , ℓ𝑏 and ℓ 𝑗 from the proof
of Lemma 10.2.3 as ℓ and call it the elaboration map, even though we
still need to prove it preserves derivability. Note that ℓ 𝑗𝑏 is not a part of elabora-

tion map, but an auxiliary map to prove
preservation of derivability.

10.2.2. Specific rules of elaboration S

When defining the rules of the standard type theory S we need to
make sure the type theory is finitary, so we need a well-founded or-
der on the rules. To be able to construct such an order we build the
theory S inductively on the order of the rules in T= (𝑅𝑖)𝑖∈I. For every
fragment T𝑖 we define an elaborationS𝑖 , where its signature contains
only the symbols for the specific object rules in T𝑖 . The syntactic part
of the retrogression transformation (and elaboration map) for S𝑖 is
just a restriction of the defined 𝑟 (and ℓ ) for S. However, we still write
𝑟 and ℓ when the restriction can be inferred.

Now suppose 𝑖 ∈ I and for the fragment T𝑖 induced by the index set

↓ 𝑖 = { 𝑗 ∈ I | 𝑗 ⊏ 𝑖}
we have already constructed an elaboration S𝑖 . Let 𝑅𝑖 = Θ =⇒ b 𝑒
be the specific rule in Tand let T𝑖+ be the fragment induced by

{ 𝑗 ∈ I | 𝑗 v 𝑖}.
Since T is finitary, the fragment T𝑖 derives

`T𝑖 Θ mctx and Θ; [] `T𝑖 b

with some derivations DΘ and Db.

We define S𝑖0 in the following way:

▶ If 𝑅𝑖 is a specific object rule in T, then we add S(
𝑖 ,Θ=⇒b 𝑒

) to

the signature of S𝑖0 and extend the syntactic part of the retro-
gression transformation. We pose the symbol rule

𝑅′
𝑖 =

(
ℓ𝑚(DΘ) =⇒ ℓ𝑏(ℓ𝑚(DΘ), [], Db)S(

𝑖,Θ=⇒b 𝑒
) (M̂1 , . . . , M̂𝑛)

)
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for M1 , . . . ,M𝑛 metavariables from Θ.
▶ If 𝑅𝑖 is a specific equality rule in T, then we pose the specific

equality rule

𝑅′
𝑖 = (ℓ𝑚(DΘ) =⇒ ℓ𝑏(ℓ𝑚(DΘ), [], Db)★ ).

To order the rules in S𝑖0, let <𝑖 be the order the index set J𝑖 for S𝑖 .
We extend the order <𝑖 by adding the new rule on top, i.e. adding
(𝑖 , 0, 𝑅′

𝑖) to the index set on top and mapping it to the new rule. With
this ordering S𝑖0 is finitary, because S𝑖 is finitary and the metacontext
and the boundary of the new rule are derivable in S𝑖 because ℓ is
an elaboration map that preserves derivability. The theory S𝑖0 is also
standard, because S𝑖 is standard and if we added a symbol we posed
precisely one symbol rule for it.

While S𝑖0 is standard, it is not yet an elaboration, because the retro-
gression transformation 𝑟 as defined is not necessarily conservative.
The crux of the problem is that there may be additional equalities
that hold in T𝑖+ but their counterparts in S𝑖0 cannot be derived as we
can see from the following example.

The theory S3 is obtained by the con-
struction of the elaboration theorem, so
we have a symbol in the signature for ev-
ery specific object rule of the theory we
started with.

Example 10.2.4 Suppose we have a finitary type theory like in Ex-
ample 4.4.4 with specific rules

[] =⇒ N type, [] =⇒ O : N, n:(□ : N) =⇒ S(S(n)) : N
to which we add another specific rule

n:(□ : N) =⇒ S(S(S(S(n)))) : N.
Suppose also we have an elaboration S3 for the fragment with the
first three rules and for S3

0 we posit the symbol rule

n:(□ : SN) =⇒ SSSSS(n) : SN

where SN is short for S(1,[]=⇒N type) and similarly for other symbols.
In S3

0 the boundary

[n:(□ : SN)]; [] `S3
0
SSS(SSS(n)) ≡ SSSSS(n) : SN by □ (10.1)

is derivable. We map it with the retrogression transformation and
get the derivable judgement

[n:(□ : N)]; [] ` S(S(S(S(n)))) ≡ S(S(S(S(n)))) : N by ★

which is derived by TT-TM-REFL. However the judgement arising
from the boundary (10.1) is not derivable in S3

0 with the given rules,
so the retrogression transformation is not conservative.

To ensure 𝑟 is conservative we add equalities as specific rules. We
start with S𝑖0 (with order ≺𝑖0 on index set J𝑖0) and inductively gener-
ate S𝑖𝑘+1 with ordering ≺𝑖𝑘+1 on index set J𝑖𝑘+1 in the following way: the
specific rules of S𝑖𝑘+1 are those of S𝑖𝑘 and for every strongly derivable
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4: Derivations in T are finite, so they
happen in a fragment of T that is elab-
orated with a relevant fragment S𝑖 .

equational rule-boundary Θ =⇒ b in S𝑖𝑘 if

𝑟∗(Θ); [] `T𝑖+ 𝑟∗(b★ )
is derivable in the fragment T𝑖+ then

Θ =⇒ b★

is a specific equality rule in S𝑖𝑘+1. There are countably many new spe-
cific rules. We index these equality rules by the triples (𝑖, 𝑘,Θ =⇒
b★ ), order them in a flat order and place them on top of (J𝑖𝑘 , ≺𝑖𝑘) to
get the well-founded ordering (J𝑖𝑘+1 , ≺𝑖𝑘+1). The theoryS𝑖𝑘+1 is standard
by definition.

We can now define the type theory S𝑖+, which has the signature equal
to the signature of S𝑖0 and the specific rules the union of the specific
rules of S𝑖𝑘 for 𝑘 ∈ ℕ. Specifically, the rules are indexed by

J𝑖+1 = ∪𝑘∈ℕJ𝑖𝑘
and the order ≺𝑖+1 is induced by the union of the well-founded or-
ders ≺𝑖𝑘 for 𝑘 ∈ ℕ. This is a well-founded order by Lemma 4.4.2.

The type theory S𝑖+ is finitary: let 𝑅 = Θ =⇒ b 𝑒 be a specific rule
of S𝑖+. Then there exist 𝑘 ∈ ℕ such that 𝑅 is a specific rule in S𝑖𝑘 .
Since S𝑖𝑘 is finitary, the judgements ` Θ mctx and Θ; [] ` b are deriv-
able in the fragment of smaller rules according to the well-founded
order. Because these derivations are embedded in the appropriate
fragment of S𝑖+, the rule 𝑅 is finitary. It is also easy to see that S𝑖+ is
standard, because all the specific object rules are symbol rules, which
are already present in S𝑖0.

Once S𝑖+ is proven to be an elaboration, we can construct the elabo-
ration Sas follows:

▶ The signature of S is already given in Subsection ‘Syntactic part
of elaboration S’, as well as the (syntactic part of) retrogression
transformation and elaboration map.

▶ The index set for the rules is the dependent sum IS = Σ(𝑖:I)J𝑖 .
▶ The ordering < on the index set IS is the lexicographic order:

(𝑖 , 𝑗) < (𝑖′, 𝑗′) if, and only if 𝑖 ⊏ 𝑖′ or (𝑖 = 𝑖′ and 𝑗 ≺𝑖 𝑗′).
▶ Rules are mapped accordingly: (𝑖, 𝑗) ∈ IS is mapped to the rule

in S𝑖 indexed by 𝑗.

With this definition the ordering of the rules of S is well-founded, as
the lexicographic order on a dependent sum of well-founded orders
is well founded, see [140] [140]: team (2021), Agda standard library. The theory S is finitary: a rule indexed by
(𝑖 , 𝑗) is already finitary in the fragment S𝑖 . The theory S is also stan-
dard by construction. The retrogression transformation 𝑟 is indeed
a type-theoretic transformation: for a specific rule at index (𝑖, 𝑗) we
have a derivation provided by the retrogression map for S𝑖 . Conser-
vativity of 𝑟 follows from a similar argument4, and so does the fact
that ℓ preserves derivability.

It remains to prove that S𝑖+ is an elaboration with the retrogression
transformation 𝑟 and elaborationmap ℓ . Specifically, we need to prove
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that 𝑟 is a conservative (Corollary 10.2.8) type-theoretic transforma-
tion (Corollary 10.2.7) and that ℓ preserves derivability (Lemma 10.2.6).

To handle equalities in S𝑖+, we prove the following lemma.

Lemma 10.2.5 If Ξ;Δ `S𝑖+ b is a strongly derivable equality bound-
ary in S𝑖+ such that

𝑟∗(Ξ); 𝑟∗(Δ) `T𝑖+ (𝑟∗(b))★
is derivable, then

Ξ;Δ `S𝑖+ b★

is (strongly) derivable in S𝑖+.

Proof. Using Proposition 4.3.6 we obtain a derivation of

(Ξ,Δ); [] `S𝑖+ b. (10.2)

Because the derivation is finite, there exists 𝑘 ∈ ℕ such that (10.2) is
derivable in S𝑖𝑘 . Since the judgement

(𝑟∗(Ξ), 𝑟∗(Δ)); [] `T𝑖+ 𝑟∗(b★ )
is just a promoted version of the derivable judgement

𝑟∗(Ξ); 𝑟∗(Δ) `T𝑖+ 𝑟∗(b★ ),
by definition of S𝑖𝑘+1 we get that the promoted judgement

(Ξ,Δ); [] `S𝑖𝑘+1 b★

is derivable in S𝑖𝑘+1. Using Proposition 4.3.6 we get derivability of

Ξ;Δ `S𝑖𝑘+1 b★

and because the theory S𝑖𝑘+1 is embedded in S𝑖+ we get the desired
derivability of

Ξ;Δ `S𝑖+ b★ .

Lemma 10.2.6 Elaboration preserves derivability:

1. If DΘ is a derivation of `T𝑖+ Θ mctx, then

`S𝑖+ ℓ (DΘ) mctx

is derivable in S𝑖+.
2. If Θ′ is a derivable elaboration candidate for Θ and DΓ is a

derivation of Θ `T𝑖+ Γ vctx, then

Θ′ `S𝑖+ ℓ (Θ′, DΓ) vctx
is derivable in S𝑖+.

3. If Θ′, Γ′ are derivable elaboration candidates for Θ, Γ and DB
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is a derivation of Θ;Γ `T𝑖+ B, then

Θ′;Γ′ `S𝑖+ ℓ (Θ′, Γ′, DB)
is derivable in S𝑖+.

4. If Θ′, Γ′, B′ are derivable elaboration candidates for Θ, Γ, B
respectively and DJ is a derivation of Θ;Γ `T𝑖+ B𝑒 , then

Θ′;Γ′ `S𝑖+ ℓ (Θ′, Γ′,B′, DJ)
is derivable in S𝑖+.

5. If Θ′, Γ′ are derivable elaboration candidates for Θ, Γ and DJ

is a derivation of Θ;Γ `T𝑖+ J, then

Θ′;Γ′ `S𝑖+ ℓ 𝑗𝑏(Θ′, Γ′, DJ)
is derivable in S𝑖+.

Proof. By induction on derivations.

Part (1):

Case MCTX-EMPTY: We use the rule MCTX-EMPTY again to derive the
metacontext `S𝑖+ [] mctx.

Case MCTX-EXTEND: The derivation ends with

D1

`T𝑖+ Ξ mctx

D2

Ξ; [] `T𝑖+ B
M ∉ |Ξ|

`T𝑖+ 〈Ξ,M:B〉 mctx

By induction hypothesis on the first premise

`S𝑖+ Ξ′ mctx (10.3)

is derivable for

Ξ′ = ℓ

(
D1

`T𝑖+ Ξ mctx

)
We can then apply induction hypothesis on the second premise withΞ′
to get a derivation of

Ξ′; [] `S𝑖+ B′ (10.4)

for

B′ = ℓ

(
Ξ′, [], D2

Ξ; [] `T𝑖+ B

)
.

We now combine (10.3) and (10.4) with MCTX-EXTEND to get a derivation
of

`S𝑖+ Θ′ mctx

with Θ′ = 〈Ξ′,M:B′〉.

Part (2):

Case VCTX-EMPTY: Similarly to the caseMCTX-EMPTY we derive the empty
variable context using the rule VCTX-EMPTY.
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Case VCTX-EXTEND: The derivation of the variable context ends with

D1

Θ `T𝑖+ Γ vctx

D2

Θ, Γ `T𝑖+ 𝐴 type
a ∉ |Γ|

Θ `T𝑖+ 〈Γ, a:𝐴〉 vctx

By induction hypothesis on the first premise we get a derivation of

Θ′ `S𝑖+ Γ′ vctx (10.5)

for

Γ′ = ℓ

(
Θ′,

D1

Θ `T𝑖+ Γ vctx

)
.

We can now use the induction hypothesis on the second premise
(given that Θ′ and Γ′ are derivable elaboration candidates and□ type
is derivable everywhere) to get a derivation of

Θ′;Γ′ `S𝑖+ 𝐴′ type (10.6)

for 𝐴′ the elaboration of type 𝐴, obtained by the appropriate elabo-
ration map. We can combine (10.5) and (10.6) with VCTX-EXTEND to get
the desired derivation of

Θ′ `S𝑖+ ℓ (Θ′, D) vctx.

Part (3):

Cases TT-BDRY-TY, TT-BDRY-TM, TT-BDRY-EQTY or TT-BDRY-EQTM: It is a
direct use of the induction hypothesis. Let us take a look at TT-BDRY-
EQTM as an example. The derivation DB ends with

D1

Θ;Γ `T𝑖+ 𝐴 type

D2

Θ;Γ `T𝑖+ 𝑠 : 𝐴

D3

Θ;Γ `T𝑖+ 𝑡 : 𝐴

Θ;Γ `T𝑖+ 𝑠 ≡ 𝑡 : 𝐴 by □

By induction hypothesis we get for

𝐴′ type = ℓ

(
Θ′, Γ′,□ type,

D1

Θ;Γ `T𝑖+ 𝐴 type

)
𝑠′ : 𝐴′ = ℓ

(
Θ′, Γ′,□ : 𝐴′,

D1

Θ;Γ `T𝑖+ 𝑠 : 𝐴

)
𝑡′ : 𝐴′ = = ℓ

(
Θ′, Γ′,□ : 𝐴′,

D1

Θ;Γ `T𝑖+ 𝑡 : 𝐴

)
derivations of

Θ′;Γ′ `S𝑖+ 𝐴′ type Θ′;Γ′ `S𝑖+ 𝑠′ : 𝐴′ Θ′;Γ′ `S𝑖+ 𝑡′ : 𝐴′

We then use TT-BDRY-EQTM to get the derivation of the desired result

Θ′;Γ′ `S𝑖+ 𝑠′ ≡ 𝑡′ : 𝐴′ by □.
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5: We just use inversion with TT-BDRY-
ABSTR.

6: Again by inversion with TT-BDRY-
ABSTR.

Case TT-BDRY-ABSTR: The derivation of the boundary ends with

D1

Θ;Γ `T𝑖+ 𝐴 type
a ∉ |Γ| D2

Θ;Γ, a:𝐴 `T𝑖+ B′[a/𝑥]
Θ;Γ `T𝑖+ {𝑥:𝐴} B′

By induction hypothesis on the first premise with

𝐴′ type = ℓ

(
Θ′, Γ′,□ type,

D1

Θ;Γ `T𝑖+ 𝐴 type

)
(10.7)

we get a derivation of

Θ′;Γ′ `S𝑖+ 𝐴′ type.

Using VCTX-EXTEND on (10.7) and the derivation of Γ′ we derive

Θ′ `S𝑖+ 〈Γ′, a:𝐴′〉 vctx.

Now we can use induction hypothesis on the third premise with Θ′
and 〈Γ′, a:𝐴′〉 to get a derivation of

Θ′;Γ′ `S𝑖+ B′′

for

B′′ = ℓ

(
Θ′, 〈Γ′, a:𝐴′〉, D2

Θ;Γ, a:𝐴 `T𝑖+ B′[a/𝑥]

)
.

We can now derive

Θ′;Γ′ `S𝑖+ {𝑥:𝐴′}B′′[𝑥/a]
by using TT-BDRY-ABSTR.

Part (4):

Case TT-ABSTR: The derivation DJ ends with

D1

Θ;Γ `T𝑖+ 𝐴 type
a ∉ |Γ| D2

Θ;Γ, a:𝐴 `T𝑖+ (B′′[a/𝑥]) 𝑒′[a/𝑥]
Θ;Γ `T𝑖+ {𝑥:𝐴} B′′ 𝑒′

The boundaryB′ is then a derivable elaboration candidate for {𝑥:𝐴} B′′
and because 𝑟 preserves forms of boundariesB′ = {𝑥:𝐴′} B′′′, where
B′′′ is a derivable5 elaboration candidate for b′′[a/𝑥] in contextΘ′;Γ′, a:𝐴′.
Because B′ is strongly derivable we have a derivation6 of Θ′;Γ′ `S𝑖+
𝐴′ type, so 〈Γ′, a:𝐴′〉 is a derivable variable context. By induction on
the second premise we get a derivation of

Θ′; 〈Γ′, a:𝐴′〉 `S𝑖+ B′′′ 𝑒′′
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for

B′′′ 𝑒′′ = ℓ 𝑗

(
Θ′, 〈Γ′, a:𝐴′〉,B′′′,

D2

Θ;Γ, a:𝐴 ` (B′′[a/𝑥]) 𝑒′[a/𝑥]

)
We conclude the proof by an application of TT-ABSTR.

Case TT-VAR: We again use the rule TT-VAR to derive

Θ′;Γ′ `S𝑖+ a : Γ′(a).
Cases TT-TY-REFL, TT-TM-REFL,TT-TY-SYM, TT-TM-SYM, TT-TY-TRAN, TT-TM-
TRAN, TT-META-CONGR, TT-CONV-EQ: Since B′ is an equality boundary
with 𝑟∗(B′) = B and Θ;Γ `T𝑖+ B★ is derivable we obtain derivability
by Lemma 10.2.5.

Cases TT-CONV-TM: The derivation ends with

D1

Θ;Γ `T𝑖+ 𝑡 : 𝐴

D2

Θ;Γ `T𝑖+ 𝐴 ≡ 𝐵

Θ;Γ `T𝑖+ 𝑡 : 𝐵

Using induction hypothesis with Part (5) on the first premise we get a
derivation of

𝑡′ : 𝐴′ = ℓ 𝑗𝑏

(
Θ′, Γ′,

D1

Θ;Γ `T𝑖+ 𝑡 : 𝐴

)
and by induction hypothesis on the second premise we obtain a
derivation of Θ′;Γ′ `S𝑖+ 𝐴′ ≡ 𝐵′ where B′ = □ : 𝐵′. We conclude
the desired derivation using TT-CONV-TM.

Cases TT-META: The derivation DJ ends with

Θ(M𝑘) = {𝑥1:𝐴1} · · · {𝑥𝑚 :𝐴𝑚} b

D𝑗

Θ;Γ `T𝑖+ 𝑡 𝑗 : 𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)]
for 𝑗 = 1, . . . , 𝑚

Db

Θ;Γ `T𝑖+ b[®𝑡/®𝑥]
Θ;Γ `T𝑖+ (b[®𝑡/®𝑥])M𝑘(®𝑡)

Since M𝑘 is also in the domain of Θ′, let

Θ′(M𝑘) = {𝑥1:𝐴′
1} · · · {𝑥𝑚 :𝐴′

𝑚}b′

By induction hypothesis we get derivations of

Θ′;Γ′ `S𝑖+ 𝑡′𝑗 : 𝐴′
𝑗[®𝑡′(𝑗)/®𝑥(𝑗)] for 𝑗 = 1, . . . , 𝑚

where

𝑡′𝑗 : 𝐴
′
𝑗[®𝑡′(𝑗)/®𝑥(𝑗)] = ℓ

(
Θ′, Γ′,□ : 𝐴′

𝑗[®𝑡′(𝑗)/®𝑥(𝑗)],
D𝑗

Θ;Γ `T𝑖+ 𝑡 𝑗 : 𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)]

)
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Because the strongly derivable boundaries B′ and b′[®𝑡′/®𝑥] both get
mapped to b[®𝑡/®𝑥] they are equal by Lemma 10.2.5. Using TT-META fol-
lowed by TT-CONV-TM we obtain a derivation of the desired judgement

Θ′;Γ′ `S𝑖+ B′M𝑘(®𝑡′) .

Case Specific rule of T𝑖+: Suppose the derivation DJ ends with an
application of the specific rule

𝑅 = Ξ =⇒ b 𝑒

for
Ξ = [M1:B1 , . . . ,M𝑛 :B𝑛]

with a derivable instantiation 𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉. Let the elab-
oration candidate for 𝑅 be

𝑅′ = [M1:B′
1 , . . . ,M𝑛 :B′

𝑛] =⇒ b′ 𝑒′ .

By induction hypothesis we get derivations of

Θ′;Γ′ `S𝑖+ B′
𝑖 𝑒

′
𝑖 for 𝑖 = 1, . . . , 𝑛

with

𝐼′(𝑖)∗B
′
𝑖 𝑒

′
𝑖 = ℓ

(
Θ′, Γ′, 𝐼′(𝑖)∗B

′
𝑖 ,

D𝑖

Θ;Γ `T𝑖+ (𝐼(𝑖)∗B𝑖) 𝑒𝑖

)
giving us the derivability (in theory S𝑖+) of the instantiation

𝐼′ = 〈M1 ↦→𝑒′1 , . . . ,M𝑛 ↦→𝑒′𝑛〉.
By Theorem 5.1.4 with the rule 𝑅′ and the derivable instantiation 𝐼′ we
derive the judgementΘ′;Γ′ `S𝑖+ (𝐼′∗b′) 𝐼′∗𝑒′ . Because 𝑟maps the bound-
aries 𝐼′∗b′ andB′ to the same boundary, they are equal by Lemma 10.2.5,
and we can thus convert along this equality to derive the desired
judgement. Part (5):

Case TT-ABSTR: The proof is similar to the case TT-BDRY-ABSTR.

Case TT-VAR: We again use the rule TT-VAR to derive

Θ′;Γ′ `S𝑖+ a : Γ′(a).
Cases TT-TY-REFL, TT-TM-REFL,TT-TY-SYM, TT-TM-SYM: It is a direct appli-
cation of the induction hypothesis. We take a look at the TT-TM-REFL
case. The derivation DJ ends with

D1

Θ;Γ `T𝑖+ 𝑡 : 𝐴

Θ;Γ `T𝑖+ 𝑡 ≡ 𝑡 : 𝐴
By induction hypothesis we get a derivation of

Θ′;Γ′ `S𝑖+ 𝑡′ : 𝐴′
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for

𝑡′ : 𝐴′ = ℓ 𝑗𝑏

(
Θ′, Γ′,

D1

Θ;Γ `T𝑖+ 𝑡 : 𝐴

)
.

We again use TT-TM-REFL to derive

Θ′;Γ′ `S𝑖+ 𝑡′ ≡ 𝑡′ : 𝐴′.

Cases TT-TY-TRAN and TT-TM-TRAN: We just take a look at the term
equality case. The type equality case is similar. The derivation DJ

ends with

D1

Θ;Γ `T𝑖+ 𝑠 ≡ 𝑡 : 𝐴
D2

Θ;Γ `T𝑖+ 𝑡 ≡ 𝑢 : 𝐴

Θ;Γ `T𝑖+ 𝑠 ≡ 𝑢 : 𝐴

By induction hypothesis we get derivations of

Θ′;Γ′ `S𝑖+ 𝑠′ ≡ 𝑡′ : 𝐴′

Θ′;Γ′ `S𝑖+ 𝑡′′ ≡ 𝑢′ : 𝐴′′

for

𝑠′ ≡ 𝑡′ : 𝐴′ = ℓ 𝑗𝑏

(
Θ′, Γ′,

D1

Θ;Γ `T𝑖+ 𝑠 ≡ 𝑡 : 𝐴

)
𝑡′′ ≡ 𝑢′ : 𝐴′′ = ℓ 𝑗𝑏

(
Θ′, Γ′,

D2

Θ;Γ `T𝑖+ 𝑡 ≡ 𝑢 : 𝐴

)
By Theorem 5.1.6 we have that Θ′;Γ′ `S𝑖+ 𝐴′ and Θ′;Γ′ `S𝑖+ 𝐴′′ are
derivable. Because the context Θ′;Γ′ is derivable, the boundary

Θ′;Γ′ `S𝑖+ 𝐴′ ≡ 𝐴′′ by □ (10.8)

is strongly derivable and it is mapped by the retrogression transfor-
mation 𝑟 to the boundary Θ;Γ `T𝑖+ 𝐴 ≡ 𝐴 by □, which can be filled
with the head ★ using the rule TT-TY-REFL. By Lemma 10.2.5 the equa-
tion pertaining to (10.8) is derivable. We can use this equation to con-
vert 𝑡′′ and 𝑢′ to type 𝐴′ and in a similar fashion as before get a
derivation of

Θ′;Γ′ `S𝑖+ 𝑡′ ≡ 𝑡′′ : 𝐴′.

Using TT-TM-TRAN we can string the equalities together to derive the
desired equality

Θ′;Γ′ `S𝑖+ 𝑠′ ≡ 𝑢′ : 𝐴′.

Cases TT-CONV-TM,TT-CONV-EQ: The proof is similar in both cases. We
take a look at TT-CONV-TM. The derivation ends with

D1

Θ;Γ `T𝑖+ 𝑡 : 𝐴

D2

Θ;Γ `T𝑖+ 𝐴 ≡ 𝐵

Θ;Γ `T𝑖+ 𝑡 : 𝐵
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By induction hypothesis we get derivations of

Θ′;Γ′ `S𝑖+ 𝑡′ : 𝐴′ Θ′;Γ′ `S𝑖+ 𝐴′′ ≡ 𝐵′

where

𝑡′ : 𝐴′ = ℓ 𝑗𝑏

(
Θ′, Γ′,

D1

Θ;Γ `T𝑖+ 𝑡 : 𝐴

)
𝐴′′ ≡ 𝐵′ = ℓ 𝑗𝑏

(
Θ′, Γ′,

D2

Θ;Γ `T𝑖+ 𝐴 ≡ 𝐵

)

Using Lemma 10.2.5 we obtain a derivation of

Θ′;Γ′ `S𝑖+ 𝐴′ ≡ 𝐴′′.

The use of the Lemma 10.2.5 follows the
same steps as in the previous cases.

We combine the equalities with TT-TY-TRAN and apply TT-CONV-TM to
derive the desired result

Θ′;Γ′ `S𝑖+ 𝑡′ : 𝐵′.
Cases :TT-META, TT-META-CONGR Both cases proceed similarly, we look
at the case for TT-META. The derivation DJ ends with

Θ(M𝑘) = {𝑥1:𝐴1} · · · {𝑥𝑚 :𝐴𝑚} b

D𝑗

Θ;Γ `T𝑖+ 𝑡 𝑗 : 𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)]
for 𝑗 = 1, . . . , 𝑚

Db

Θ;Γ `T𝑖+ b[®𝑡/®𝑥]
Θ;Γ `T𝑖+ (b[®𝑡/®𝑥])M𝑘(®𝑡)

Since M𝑘 is also in the domain of Θ′, let

Θ′(M𝑘) = {𝑥1:𝐴′
1} · · · {𝑥𝑚 :𝐴′

𝑚}b′

By induction hypothesis we get derivations of

Θ′;Γ′ `S𝑖+ 𝑡′𝑗 : 𝐴′′
𝑗 for 𝑗 = 1, . . . , 𝑚

Θ′;Γ′ `S𝑖+ b′′

where

𝑡′𝑗 : 𝐴
′′
𝑗 = ℓ 𝑗𝑏

(
Θ′, Γ′,

D𝑗

Θ;Γ `T𝑖+ 𝑡 𝑗 : 𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)]

)
Since for 𝑗 = 1, . . . , 𝑚 types 𝐴′′

𝑗 and 𝐴′
𝑗[®𝑡′(𝑗)/®𝑥(𝑗)] are derivable (in a

derivable context) and both getmapped to𝐴 𝑗[®𝑡(𝑗)/®𝑥(𝑗)] by 𝑟, the Lemma 10.2.5
provides us with a derivation of

Θ′;Γ′ `S𝑖+ 𝐴′′
𝑗 ≡ 𝐴′

𝑗[®𝑡′(𝑗)/®𝑥(𝑗)]

so we can convert 𝑡′𝑗 accordingly. Because Θ′ is a derivable elabora-
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tion candidate for Θ, the boundary Θ′;Γ′ `S𝑖+ b′ is also derivable and
we can apply TT-META to get a derivation of the desired judgement

Θ′;Γ′ `S𝑖+ (b′[®𝑡′/®𝑥′])M𝑘(®𝑡′) .

Case Specific rule of T𝑖+: Suppose the derivation DJ ends with an
application of the specific rule

Ξ =⇒ b 𝑒

for
Ξ = [M1:B1 , . . . ,M𝑛 :B𝑛]

with a derivable instantiation 𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉. By induction
hypothesis we get derivations of

Θ′;Γ′ `S𝑖+ B′
𝑖 𝑒

′
𝑖 for 𝑖 = 1, . . . , 𝑛

with

B′
𝑖 𝑒

′
𝑖 = ℓ 𝑗𝑏

(
Θ′, Γ′,

D𝑖

Θ;Γ `T𝑖+ (𝐼(𝑖)∗B𝑖) 𝑒𝑖

)
giving us the derivability (in theory S𝑖+) of the instantiation

𝐼′ = 〈M1 ↦→𝑒′1 , . . . ,M𝑛 ↦→𝑒′𝑛〉.
By Theorem 5.1.4 we derive the desired judgement by applying the
elaborated rule with the derivable instantiation 𝐼′.

Corollary 10.2.7 The retrogression transformation 𝑟 : S𝑖+ → T𝑖+ is a
type-theoretic transformation.

Proof. The retrogression transformation is already a syntactic trans-
formation. We just need to prove that specific rules Ξ =⇒ j of S𝑖+
are mapped to derivable judgements.

▶ if Ξ =⇒ j is a specific object rule, then

j= b′S(
𝑘,Θ=⇒b 𝑒

) (M̂1 , . . . , M̂𝑛)

for some specific object rule 𝑅𝑘 = Θ =⇒ b 𝑒 in the theory T𝑖+.
We then have

𝑟∗(Ξ =⇒ j) = Θ =⇒ b 𝑒

which has a generic derivation in T𝑖+, i.e. it is just an application
of that same rule with generically applied metavariables.

▶ If Ξ =⇒ j is a specific equality rule in S𝑖+, then there exists
𝑘 ∈ ℕ such that Ξ =⇒ j is a specific rule in S𝑖𝑘 , for which by
definition we have a derivation of 𝑟∗(Ξ); [] `T𝑖+ 𝑟∗(j).
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Corollary 10.2.8 The retrogression map 𝑟 : S𝑖+ → T𝑖+ is conserva-
tive.

Proof. Let Ξ; [] `S𝑖+ b be a strongly derivable boundary in the theory
S𝑖+, such that

𝑟∗(Ξ); [] `T𝑖+ (𝑟∗b) 𝑒
is derivable by some derivation D. By Lemma 10.2.6 the judgement

Ξ; [] `S𝑖+ bℓ (Ξ, [], b, D)
is derivable.

10.3. Algorithmic properties of elaboration

The usual use case for elaboration is in a proof assistant. We want to
enable the user to input judgements in a finitary type theory (drop-
ping some annotations), but the theory behind the curtain is a well-
behaved standard type theory. So the question arises, can we algo-
rithmically elaborate judgements from a finitary type theory into a
standard one?

We can view elaboration as a procedure, an elaborator, mimicking
the desired behavior in a proof assistant: it takes a judgement in a
finitary type theory and gives its strongly derivable elaboration, if it
exists, otherwise reports there is none. Implementing an elaborator in
a proof assistant raises the question if the procedure is computable.
But having a computable elaborator (with the above definition) also
means we have a decidable algorithm for checking if judgements are
strongly derivable. There is no hope of having such a decision proce-
dure for all judgements of a type theory as metacontexts can contain
too many equalities which is shown in the following example.

Example 10.3.1 Having equalities in metacontexts enables us to en-
code the semigroup word problem, which is proven to be unde-
cidable [94–96, 101, 124]

[124]: Post (1947), “Recursive Unsolvabil-
ity of a Problem of Thue”
[95]: Markov (1947), “Impossibility of
certain algorithms in the theory of
associative systems”
[96]: Markov (1947), “Impossibility of
certain algorithms in the theory of
associative systems”
[101]: Matiyasevich (1967), “Simple
examples of undecidable associative
calculi”
[94]: Makanin (1966), “On the identity
problem in finitely defined semigroups”

. Consider the empty type theory (with no
specific rules) and suppose we have a computable elaborator for
it. Since the metacontexts can contain equality metavariables, we
can form the following derivable metacontext

We write the symbol ◦ in the infix form
for clarity.

In the boundaries of equational
metavariables E1 , …, E5 the concatena-
tion of the metavariables A, B and C
is just short for applying the metavari-
able ◦. We also drop the parenthesis,
because ◦ is associative.

Θ = [G : (□ type),
◦ : ({𝑥:G}{𝑦:G}□ : G),
assoc : ({𝑥:G}{𝑦:G}{𝑦:G}(𝑥 ◦ 𝑦) ◦ 𝑧 ≡ 𝑥 ◦ (𝑦 ◦ 𝑧) : G by □),
A : (□ : G), B : (□ : G),C : (□ : G), E1 : (CCBB ≡ BBCC : G by □),
E2 : (BCCCBB ≡ CBBBCC : G by □),
E3 : (ACCBB ≡ BBA : G by □),
E4 : (ABCCCBB ≡ CBBA : G by □),
E5 : (BBCCBBBBCC ≡ BBCCBBBBCCA : G by □)]
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specifying a semigroup with three generators and five equations.
Using the elaborator on judgements of the form Θ; [] ` 𝑢 ≡ 𝑣 : G
for suitable expressions 𝑢 and 𝑣 decides whether this judgement is
derivable and thus encodes the semigroup word problem for this
semigroup, which was proven by Makanin [94] [94]: Makanin (1966), “On the identity

problem in finitely defined semigroups”
to be undecidable.

Therefore even the empty type theory cannot have a computable
elaborator for all judgements.

To avoid problemswith computability we restrict our view to the judge-
ments without equational metavariables in the metavariable context.
We call such (meta)contexts equation-free (meta)contexts.

We can now formally define what is an elaborator. As before we fix a
finitary type theory Tand its elaboration to a standard type theory S
with the retrogression transformation 𝑟 and the elaboration map ℓ .

Because we will be considering decision procedures, we also assume
that the specific rules of T are computable (with the well-founded
order beneath).

Definition 10.3.2 An elaborator for T is an algorithm that takes a
judgement

`T Θ mctx or Θ `T Γ vctx or Θ;Γ `T B or Θ;Γ `T J

in the finitary theory T, where Θ is an equation-free metacontext,
and

▶ gives a strongly derivable judgement

`S Θ′ mctx, Θ′ `S Γ′ vctx, Θ′;Γ′ `S B′, or Θ′;Γ′ `S J′

respectively in the standard theory Sand derivations exhibit-
ing strong derivability, such that

𝑟∗(Θ′) = Θ 𝑟∗(Γ′) = Γ 𝑟∗(J′) = J 𝑟∗(B′) = B

if such a strongly derivable judgement exists,
▶ reports there is no such strongly derivable judgement, other-

wise.

Needelss to say an elaborator, if it exists, is computable for our cho-
sen type theory. In Subsection 10.3.2 we give a characterization of
when the elaborator exists, namely that the finitary type theory T

has decidable checking.

10.3.1. Type-theoretic checking

Any user of typed programming languages is familiar with the concept
of type checking. In proof assistants based on type theories it usually
takes the form of checking that a term judgement is well-formed and
derivable, namely that the given term has the prescribed type. In the
meta-language of finitary type theories, type checking is a procedure
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7: In this meta-level reasoning we are
using the Markov principle and the fact
that the set of specific rules is com-
putably enumerable. Since taking the
derivations is more in line with the con-
structive reasoning, we work with this
definition.

that given a (strongly) derivable term-boundary

Θ;Γ ` □ : 𝐴

and a term expression 𝑡 ∈ ExprΣ(Tm,Θ;Γ) checks if the judgement

Θ;Γ ` 𝑡 : 𝐴
is (strongly) derivable, or reports that it is not.

Similarly, equality checking is a procedure that starts with a derivable
equality boundary

Θ;Γ ` 𝐴 ≡ 𝐵 by □ or Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴 by □

and checks if the boundaries can be derivably filled with the head★.

Example 10.3.1 shows us that no type theory can have decidable equal-
ity checking for all judgements, so we again restrict the condition to
the judgements in equation-free metacontexts.

We observe that both type checking and equality checking have the
same form in the meta-language of finitary type theories: we start
with a derivable boundary and a head that syntactically fits the given
boundary, and check that the judgement is derivable. We can there-
fore generalize these procedures in the concept of checking.

Definition 10.3.3 The checking procedure takes a judgement

Θ;Γ ` b 𝑒

in an equation-freemetacontextΘ with a strongly derivable bound-
ary b and reports whether the judgement is derivable.

Note that in our definition of the checking procedure the output is a
guarantee that the judgement is derivable without the actual deriva-
tion. Another option would be to take as input a derivation that b is
strongly derivable and output the entire derivation of the judgement.
The approaches are equivalent:

▶ If the procedure does not take a derivation as input, we can just
forget it.

▶ If the procedure needs a derivation, but it is not given, we can
run the semi-decidable procedure that searches for a deriva-
tion7. Since we are guaranteed the derivation exists, the search
will surely terminate with an appropriate derivation, which we
can feed to the checking procedure.

Similarly to checking, we define the equality checking procedure.

Definition 10.3.4 The equality checking procedure takes a strongly
derivable equality boundary

Θ;Γ ` 𝐴 ≡ 𝐵 by □ or Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴 by □

in an equation-free metacontext Θ and either yields a derivable
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judgement

Θ;Γ ` 𝐴 ≡ 𝐵 by ★ or Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴 by ★

or reports it is not derivable.

In Part ‘An equality checking algorithm’ we thoroughly describe an
equality checking algorithm that acts as an equality checking proce-
dure and is adaptable for a large class of theories. However, whether
a type theory has an equality checking procedure depends on the
rules of the theory itself.

We say that a finitary type theory has decidable (equality) checking,
if there exists a computable (equality) checking procedure.

Proposition 10.3.5 If a standard type theory Shas decidable equal-
ity checking, then it has decidable checking.

Proof. Suppose S is a standard type theory with decidable equality-
checking. Suppose Θ;Γ ` b is a strongly derivable boundary with Θ
an equation-free metacontext and let Θ;Γ ` b 𝑒 be the judgement
we would like to check. If b is an equality boundary, we can run the
equality checking algorithm to get the result. So suppose b is an ob-
ject boundary and let us first consider the case when b = □ : 𝐴.
By Theorem 5.2.2 we can confine ourselves to finding a derivation that
ends with TT-VAR, TT-META or a symbol rule, and each of those can be
followed by one conversion using TT-CONV-TM. We use recursion on
the structure of 𝑒 :

Case 𝑒 = a: Use equality checking algorithm to check if 𝐴 ≡ Γ(a). If so,
then we use TT-VAR combined with TT-CONV-TM to obtain the desired
derivation. Otherwise report there is none.

Case 𝑒 = M(𝑡1 , . . . , 𝑡𝑚): Let
Θ(M) = {𝑥1:𝐴1} · · · {𝑥𝑚 :𝐴𝑚}□ : 𝐵

Recursively check judgements

Θ;Γ ` 𝑡 𝑗 : 𝐴 𝑗[𝑡1/𝑥1 , . . . , 𝑡 𝑗−1/𝑥 𝑗−1] for 𝑗 = 1, . . . , 𝑚 (10.9)

If any of them fail, report there is no derivation. Otherwise using the
equality checking algorithm check that

Θ;Γ ` 𝐵[𝑡1/𝑥1 , . . . , 𝑡𝑚/𝑥𝑚] ≡ 𝐴

is derivable. If not, then report there is no derivation. Otherwise we
get the desired derivation using TT-META on (10.9) and combining it
with TT-CONV-TM on equation (10.3.1).

Case 𝑒 = S(𝑒1 , . . . , 𝑒𝑛): Since S is a standard type theory, specific ob-
ject rules are symbol rules. Let

[M1:B1 , . . . ,M𝑛 :B𝑛] =⇒ S(M̂1 , . . . , M̂𝑛) : 𝐵
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be the symbol rule for S in the theory S. Recursively check that the
instantiation

𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉
of [M1:B1 , . . . ,M𝑛 :B𝑛] overΘ;Γ is derivable, using TT-ABSTR on the ab-
stracted boundaries and recursively calling the algorithm on premises.
If the instantiation is not derivable, report there is no derivation. Oth-
erwise using the equality checking algorithm check that the natural
type matches the type from the boundary, i.e. check that the equation

Θ;Γ ` 𝐼∗(𝐵) ≡ 𝐴 (10.10)

holds. If not, report there is no derivation. Otherwise we get the de-
sired derivation using the derivable instantiation 𝐼 on the symbol rule
for S, followed by TT-CONV-TM with equation (10.10).

If b = □ type, the procedure is similar to the term judgement.

While standard type theories are sufficiently well-behaved for Propo-
sition 10.3.5 to hold, finitary type theories are not: decidable equality
checking for a finitary type theory does not imply decidable checking.
We demonstrate this fact in Example 10.3.8. But before we show the
example, we prove that a theory without specific equational rules has
decidable equality checking.

Lemma 10.3.6 If T is a raw type theory with no specific equality
rules, then every derivable equality in an equation-free metacon-
text that holds in T can be derived using TT-TY-REFL or TT-TM-REFL.

Proof. Let Θ be an equation-free metacontext. We consider type and
term equations separately.

LetΘ;Γ ` 𝐴 ≡ 𝐵 be a derivable equality inT. We proceed by induction
on the derivation. By inversion we consider the following cases.

Case TT-TY-REFL: Trivial.

Case TT-TY-SYM: By induction we have a derivation of Θ;Γ ` 𝐵 ≡ 𝐴
using TT-TY-REFL which implies that 𝐴 and 𝐵 are syntactically equal.
Thus we can derive Θ;Γ ` 𝐴 ≡ 𝐵 using TT-TY-REFL as well.

Case TT-TY-TRAN: By induction we have a derivation of Θ;Γ ` 𝐴 ≡ 𝐶
and Θ;Γ ` 𝐶 ≡ 𝐵 using TT-TY-REFL which implies that 𝐴, 𝐵 and 𝐶 are
syntactically equal. Thus we can derive Θ;Γ ` 𝐴 ≡ 𝐵 using TT-TY-REFL
as well.

Case Congruence rule: By induction hypothesis on the premises im-
plies that the arguments (of a symbol or a metavariable) are syntac-
tically equal, so 𝐴 and 𝐵 are also syntactically equal.

Note that there is no case for themetavariable rule or an instantiation
of a specific rule. The first is due to Θ being equation-free and the
latter is because there are no specific equality rules.

For a term equation suppose Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴 be a derivable equality
in T. We again proceed by induction on the derivation.
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Case TT-TM-REFL, TT-TM-SYM, TT-TM-TRAN and congruence rule: Similar
to the type case.

Case TT-CONV-EQ: Suppose the derivation ends with

Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐴 Θ;Γ ` 𝐴 ≡ 𝐵

Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐵 .

By induction hypothesis 𝑠 and 𝑡 are syntactically equal, as well as 𝐴
and 𝐵. So we can indeed derive Θ;Γ ` 𝑠 ≡ 𝑡 : 𝐵 using TT-TM-REFL.

Again there is no case for the metavariable rule or an instantiation of
a specific rule.

Lemma 10.3.7 If T is a raw type theory with no specific equality
rules, then Thas decidable equality checking.

Proof. Let Θ;Γ ` Bbe a strongly derivable equational boundary in an
equation-free metacontext Θ. By Lemma 10.3.6 every derivable equal-
ity can be derived by the reflexivity rule, so equality checking reduces
to checking syntactic equality which is decidable.

It is easy to find an example of a com-
putable set whose first projection is not
computable, but just semidecidable. We
could for instance use the halting set as
the projection of

𝐷 = {(𝑛, 𝑚, 𝑘) ∈ ℕ3 | 𝑇(𝑛, 𝑚, 𝑘)}
where 𝑇(𝑛, 𝑚, 𝑘) is the predicate which
is true when the Turing machine en-
coded with 𝑛 halts on input encoded
with𝑚 with the execution trace encoded
with 𝑘. Here we assume we have en-
codings of Turing machines, inputs and
traces into ℕ as well as pairs of natural
numbers. We implicitly use conversion
along these encodings which have been
constructed [11, 143]

[143]: Turing (1937), “On Computable
Numbers, with an Application to the
Entscheidungsproblem”
[11]: Asperti et al. (2015), “A formalization
of multi-tape Turing machines”

. The set 𝐷 is clearly
decidable, as we can run the Turing ma-
chine 𝑛 on given input 𝑚 and check if
the execution trace matches 𝑘.

Example 10.3.8 Suppose 𝐷 ⊆ ℕ ×ℕ is a computable set such that
its projection

𝜋1(𝐷) = {𝑛 ∈ ℕ | ∃𝑚 ∈ ℕ. (𝑛, 𝑚) ∈ 𝐷}
is semidecidable, but not computable. We construct the following
finitary type theory T:

▶ The signature of T is given by ΣT = (A𝑛 :(Ty, []))𝑛∈ℕ .
▶ For every (𝑛, 𝑚) ∈ 𝐷 there is a specific rule

𝑅(𝑛,𝑚) = ([] =⇒ A𝑛 type).
This is indeed a finitary type theory, we can take the lexicographic
order on the index set 𝐷 for a well-founded order. Theory T has
decidable equality checking by Lemma 10.3.7. Note that not every
symbol in the signature ΣT appears in a specific rule.

Now observe that []; [] ` □ type is a derivable boundary. We would
like to check

[]; [] ` A𝑛 type

for some 𝑛 ∈ ℕ.

If the type theory T had decidable boundary-checking, we would
be able to decide the semidecidable set 𝜋1(𝐷) which is a contradic-
tion. Thus we have constructed a finitary type theory with decidable
equality checking, but undecidable checking.

The crux of the problem is that the conclusions of the specific rules
do not record all the information stored in the index of the rule.
In the elaboration of this theory as a standard type theory, only
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derivable type symbols appear in the signature and therefore pose
no problem to the decidability of checking.

A similar problem to the one in Example 10.3.8 can occur when not all
object premises are faithfully recorded in the conclusion of a deriv-
able judgement in a finitary type theory.

10.3.2. Algorithmic properties of elaborators

Now that we have the definition of checking, we can finally state
the theorem giving characterization of when an elaborator is com-
putable.

Theorem 10.3.9 A finitary type theory T has an elaborator if and
only if Thas decidable checking.

Proof. We need to prove both directions of the equivalence.

Part (=⇒): Suppose T has an elaborator. We need to prove that T

has decidable checking. Let Θ;Γ `T b be a strongly derivable bound-
ary in an equation-free metacontext Θ and 𝑒 an expression that syn-
tactically fits the boundary. We want to algorithmically check if the
judgement

Θ;Γ `T b 𝑒 (10.11)

is derivable in theory T. We apply the following algorithm:

1. Run the elaborator on the judgement (10.11).
2. Depending on the result:

▶ If the elaborator succeeds with some judgement

Θ′;Γ′ `Sj′

the judgement (10.11) is derivable.
▶ If the elaborator reports there is no elaboration candidate,

report that (10.11) is not derivable.

Since the elaborator is computable, running it on the judgement (10.11)
will terminate. If the elaborator succeeds, we get a derivable elabora-
tion candidate for (10.11), so the following equations hold:

𝑟∗(Θ′) = Θ 𝑟∗(Γ′) = Γ 𝑟∗(j′) = b 𝑒 .

Since the retrogression transformation 𝑟 is a type-theoretic transfor-
mation, it preserves derivability by Theorem 9.1.3, so (10.11) is deriv-
able as well. If the elaborator reports there is no elaboration candi-
date, the checking correctly fails as well, because all strongly deriv-
able judgements have a derivable elaboration candidate.

Part (⇐=): For the other direction, suppose that T has decidable
checking. Since ℓ as defined in the proof of Lemma 10.2.3 is com-
putable we only need to compute its inputs. Because T has decid-
able judgement-checking we can compute the input derivations re-
cursively.
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8: The boundary 𝑟∗(Θ); 𝑟∗(Γ) `T 𝑟∗(b) is
strongly derivable because 𝑟 preserves
derivability.

An elaborator is thus the most general checking algorithm if any ex-
ists, as it not only checks derivability of a judgement, but also com-
putes its elaboration thus recovering all themissing annotations. Con-
sequently having an elaborator gives rise to checking algorithms for
the elaboration.

Theorem 10.3.10 If a finitary type theory Thas decidable equality-
checking, so does its elaboration S.

Proof. Let Θ;Γ `S b be a strongly derivable equality boundary in S

in the equation-free metacontext Θ. We run checking algorithm for
theory Ton the judgement8

𝑟∗(Θ); 𝑟∗(Γ) `T (𝑟∗(b))★ . (10.12)

If the algorithm reports failure, we propagate the error report: ifΘ;Γ `S
b★ were derivable, (10.12) would be also. Otherwise we get a deriva-
tion Dof (10.12). The equalityΘ;Γ `S b★ is derivable by Lemma 10.2.5.

Corollary 10.3.11 If T has decidable checking, so does its elabora-
tion S.

Proof. Since Thas decidable checking it also has decidable equality
checking. By Theorem 10.3.10 the elaboration S has decidable equal-
ity checking as well. Because S is a standard type theory by Proposi-
tion 10.3.5 it has decidable checking.

We note that the converse of the Corollary 10.3.11 does not hold: The
elaboration as a standard type theorySof a finitary type theoryThav-
ing decidable checking does not imply that T had decidable check-
ing as well. The counter-example is again the finitary type theory T

from Example 10.3.8. The theory has decidable equality checking, so
by Theorem 10.3.10 its elaboration Shas decidable equality checking
as well. By Proposition 10.3.5 S has decidable checking, but we have
shown in Example 10.3.8 that the theory Tdoes not.



Discussion 11.
11.1. Related work

11.1.1. Translations of formal systems

There are various kinds of transformations between formal systems
and they are performed on different levels: transformations between
logics, from logic to type theory, providing semantic models or an in-
terpretation etc. We only summarize some of the transformations that
are most relevant to our work. Some of these transformations were
already compared to our definition of type-theoretic transformations
in Section 9.3.

On the level of transformations between logics is the double nega-
tion translation that was developed by Kolmogorov [83]

[83]: Kolmogorov (1925), “On the princi-
ples of excluded middle (Russian)”

, Gödel [62]

[62]: Gödel (1933), “Zur intuitionistis-
chen Arithmetik und Zahlentheorie”

,
Gentzen [56, 57, 138]

[57]: Gentzen (1974), “Über das Verhält-
nis zwischen intuitionistischer und
klassischer Arithmetik”
[138]: Szabo (1971), “The Collected
Papers of Gerhard Gentzen”
[56]: Gentzen (1936), “Die Widerspruchs-
freiheit der reinen Zahlentheorie”

, Kuroda [86]

[86]: Kuroda (1951), “Intuitionistische
Untersuchungen der formalistischen
Logik”

and Krivine [84]

[84]: Krivine (1990), “Opérateurs de mise
en mémoire et traduction de Gödel”

whose versions
slightly differ. The idea of the translation is to take each classical
proposition into its double negation and so translate a classically
valid formula into an intuitionistically valid one. While this is a trans-
lation on the level of syntax, it is not a type-theoretic transformation
in the sense of Definition 9.1.2 as shown in Example 9.3.7. However,
we could present it as a partial map from derivations to judgements,
similarly to the elaboration map.

A transformation from a classical to an intuitionistic setting can also
be achieved when we combine the double negation translation with
another transformation. We can for instance couple it with the Di-
alectica interpretation [14, 63] [63]: Gödel (1958), “Über eine bisher

nicht erweiterung des finiten stand-
punktes”
[14]: Avigad et al. (1998), “Gödel’s
Functional Interpretation”

, an interpretation of a formula in intu-
itionistic (Heyting) arithmetic in a quantifier-free formula of System
T, or the 𝐴-translation [55]

[55]: Friedman (1978), “Classically and
intuitionistically provably recursive
functions”

which relate to type-theoretic transforma-
tions similarly to the double-negation translation. The computational
analogue of the double negation translation is the continuation pass-
ing style translation ([54, 126]

[54]: Fischer (1993), “Lambda-Calculus
Schemata”
[126]: Reynolds (1972), “Definitional
Interpreters for Higher-order Program-
ming Languages”

). The Dialectica interpretation was later
reformulated by Pédrot [113, 114]

[113]: Pédrot (2014), “A functional
functional interpretation”
[114]: Pédrot (2015), “A Materialist Di-
alectica. (Une Dialectica matérialiste)”

into the functional functional inter-
pretation.

The famous translation of logic to type theory is the is propositions
as types, or the Curry-Howard correspondence [48, 49, 74, 149], giv-
ing proofs a computatinal content, which is shown to adhere to the
definition of type-theoretic transformations in Example 9.3.1 and Ap-
pendix Chapter A. The counterpart of the Curry-Howard correspon-
dence is the propositions as bracketed or squash types translation [16,
44, 117, 142] that hides the computational content.

On the level of syntactic transformations between type theories there
is the elimination of equality reflection from intentional type theory. It
was implemented in Coq by Winterhalter, Sozeau and Tabareau [152] [152]: Winterhalter et al. (2019), “Elimi-

nating Reflection from Type Theory”
.

They translate derivations of extensional type theory (ETT) into proof
terms of intensional type theory (ITT), so as mentioned in Section 9.3
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it is more similar to the elaboration map than a type-theoretic trans-
formation. The translation from ETT to ITT was first done on a seman-
tic level (categorically) by Hofmann in 1995 [70, 72]

[70]: Hofmann (1996), “Conservativity
of Equality Reflection over Intensional
Type Theory”
[72]: Hofmann (1997), Extensional
Constructs in Intensional Type Theory

, later syntactically
by Oury [112]

[112]: Oury (2005), “Extensionality in the
Calculus of Constructions”

and has now been implemented.

Based on Boulier’s syntactic models [29, 30]

[29]: Boulier et al. (2017), “The next 700
syntactical models of type theory”
[30]: Boulier (2018), “Extending type
theory with syntactic models”

, Winterhalter in his PhD
thesis also proposes a definition of syntactic translations [151]

[151]: Winterhalter (2020), “Formalisa-
tion and Meta-Theory of Type Theory”

which
is given by two maps: one from types to types and the other from
terms to terms. Such a notion of a transformation is more flexible
than our syntactic and type-theoretic transformations. However, as
Winterhalter points out, the usual properties that one desires from
a syntactic translation (type preservation; preservation of falsehood,
reduction and conversion; relative consistency; substitutivity) impose
enough restrictions that Winterhalter’s syntactic translations in their
setting coincide with the type-theoretic transformations we propose
in Definition 9.1.2.

On the semantic level, Dybjer [52] [52]: Dybjer (1995), “Internal Type
Theory”

defines morphisms of categories
with families (CwFs) which preserve the structure on-the-nose, mean-
ing the (variable) context extension is preserved and so are substi-
tutions and judgement forms. Similarly Uemura [144] [144]: Uemura (2019), A General Frame-

work for the Semantics of Type Theory
defines mor-

phisms of type theories asmorphisms of categories with representable
maps (CwRFs). These also preserve the structure: preserving finite lim-
its leads to preservation of empty contexts and is-type judgement in
our case, preservation of representable maps relates to the preser-
vation context comprehension, preservation of pushforwards along
representable maps would mean the abstractions are also preserved.
There is also the notion of weak morphism of CwFs [27] [27]: Birkedal et al. (2020), “Modal

dependent type theory and dependent
right adjoints”

also called
pseudomorphism in [80]

[80]: Kaposi et al. (2019), “Gluing for
Type Theory”

that preserves the empty context and con-
text extension just up to isomorphism. Intuitively, these concepts on
the semantic level seem to closely relate to the properties of type-
theoretic transformations on the syntactic level. However, it would
require to construct syntactic models of finitary type theories in or-
der to be able to precisely relate morphisms of CwFs and CwRFs to
our notion of type-theoretic transformations. We leave such endeav-
ors for the future.

In their work on general type theories Bauer, Lumsdaine and Hasel-
warter also propose a definition of a raw type theory map that is anal-
ogous to the type-theoretic transformation from Definition 9.1.2. They
use the map to construct a well-founded replacement, which shows
that sufficiently nice raw type theories can be given a well-founded
ordering on the rules. The definition of the well-founded replacement
can be adapted to our setting and the theorem holds with essentially
the same proof.

11.1.2. Type-inference and elaboration

Since writing fully annotated syntax very quickly becomes unread-
able and unmanageable, the idea of elaboration as a soft concept
has been around for a while, the initial idea ususally being attributed
to Robert Pollack [123] [123]: Pollack (1992), “Implicit Syntax”. As Francisco Ferreira and Brigitte Pientka write
in [53] [53]: Ferreira et al. (2014), “Bidirectional

Elaboration of Dependently Typed
Programs”

:
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”To make programming with dependent types practical,
dependently typed systems provide a compact language
for programmers where one can omit some arguments,
called implicit, which can be inferred. This source language
is then usually elaborated into a core language where type
checking and fundamental properties such as normaliza-
tion are well understood. Unfortunately, this elaboration
is rarely specified and in general is illunderstood.”

and Jesper Cockx and Andreas Abel write in [40] [40]: Cockx et al. (2018), “Elaborating
Dependent (Co)Pattern Matching”

:

“Dependently typed functional languages ( . . . ) combine
programming and proving into one language, so they should
be at the same time expressive enough to be useful and
simple enough to be sound. These apparently contradic-
tory requirements are addressed by having two languages:
a high-level surface language that focuses on expressivity
and a small core language that focuses on simplicity. The
main role of the typechecker is to elaborate the high-level
surface language into the low-level core. Since the differ-
ence between the surface and core languages can be quite
large, the elaboration process can be, well, elaborate.”

Consequently there is a plethora of techniques for it [12, 32, 40, 53,
68, 85, 89, 107, 110, 123]

[123]: Pollack (1992), “Implicit Syntax”
[68]: Harper et al. (1998), “A Type-
Theoretic Interpretation of Standard
ML”
[89]: Lee et al. (2007), “Towards a
Mechanized Metatheory of Standard
ML”
[110]: Norell (2007), “Towards a practical
programming language based on
dependent type theory”
[12]: Asperti et al. (2012), “A Bi-
Directional Refinement Algorithm for
the Calculus of (Co)Inductive Construc-
tions”
[32]: Brady (2013), “Idris, a general-
purpose dependently typed pro-
gramming language: Design and
implementation”
[53]: Ferreira et al. (2014), “Bidirectional
Elaboration of Dependently Typed
Programs”
[107]: Moura et al. (2015), Elaboration in
Dependent Type Theory
[40]: Cockx et al. (2018), “Elaborating
Dependent (Co)Pattern Matching”
[85]: Kudasov (2021), A proof assistant
for synthetic ∞-categories

. The idea of elaboration is closely related to
bidirectional type-checking in programming languages [122]

[122]: Pierce et al. (2000), “Local type
inference”

, the con-
cept whose origins and development is summarised in [51]

[51]: Dunfield et al. (2020), Bidirectional
Typing

. Usually
elaboration is considered to begin at the stage where we are dealing
with the intricacies of the core type theory rather than just syntax of
the surrounding programming language.

11.2. Future directions

The first possible next step would be to implement type-theoretic
transformations for standard type theories in the Andromeda 2 proof
assistant. Transformations could be thought of as a technique in proof
development. However, for such a technique to be usable in practice,
setting up the transformations should be convenient for the users
and have as little overhead as possible. It would be interesting to see
how the use of transformations impacts efficiency in terms of compu-
tational resources, length of proof scripts and effort invested by the
user.

On the theoretical side, the category of type theories from Defini-
tion 9.2.1 could be submitted to a thorough investigation. While we
only mention two properties, namely the initial object and coprod-
ucts, the language of category theory is very expressive and could pro-
vide the tools for further meta-analysis of type theories and how they
interact. Another direction is relating the syntactic representations of
finitary type theories as described in Part ‘Finitary Type Theories’ with
the semantic notions, for example the categories with representable
maps of Uemura [144] [144]: Uemura (2019), A General Frame-

work for the Semantics of Type Theory
, and the type-theoretic transformations with

morphisms of CwRFs through syntactic models of finitary type theo-
ries.



11. Discussion 110

When the ideas of the elaboration theoremwere presented [116] [116]: Petković Komel (2021), Towards an
elaboration theorem

, Mike
Shulman raised a question about the reverse direction of elaboration.
Designing a proof assistant usually starts with a well-behaved core
(standard) type theory and then some arguments are made implicit
to obtain a finitary type theory, the opposite order of the elaboration
theorem. It would be very useful to know under what conditions an ar-
gument can be omitted while the core theory remains an elaboration
of the finitary one.

The full meta-theory of type-theoretic transformations as developed
in this thesis has not yet been formalized, hence the long paper-
proofs are necessary. It would certainly benefit future developments
to formalize the syntax of finitary type theories and the transforma-
tions between them. First steps towards such a formalization have
already been made [19, 93] [93]: Loutchmia et al. (2021), Formaliza-

tion of simple type theory
[19]: Bauer (2021), Syntax of dependent
type theories

. But before we dig in the formalization, we
can make the following observation. As noticed in Section 7.1, the sub-
stitutions, instantiations and type-theoretic transformations seem to
behave very similarly: they all instantiate some kind of “variables”,
be it variables from a variable context, metavariables from a meta-
context or symbols from a signature. The theorems about their inter-
actions are also very similar (for example Theorem 5.1.5 and Propo-
sition 9.1.6). It remains to be seen if and how we can unify the syn-
tax of all three kinds of variables (variables, metavariables and sym-
bols) and prove the theorems about them in a uniform way. Such a
simplification of the syntax would inevitably simplify the formaliza-
tion as well. Another possible generalisation lies in the prescribed
four judgement forms. Following the example of Uemura’s definition
of type theories [144] [144]: Uemura (2019), A General Frame-

work for the Semantics of Type Theory
the judgement forms could be more flexible

and subsume further examples like the interval judgement of cubical
type theories. It would also allow for a more general notion of a type-
theoretic transformation, where judgement forms are not necessarily
preserved, but enough of the type-theoretic structure interacts well
with the transformation.
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Equality checking algorithms are essential components of proof as-
sistants based on type theories [2, 5, 45, 58, 108, 133] [45]: (2021), The Coq proof assistant,

version 2021.02.2
[5]: (2021), The Agda proof assistant
[108]: Moura et al. (2015), “The Lean
Theorem Prover (System Description)”
[133]: Sozeau et al. (2019), “Coq Coq
correct! Verification of Type Checking
and Erasure for Coq, in Coq”
[58]: Gilbert et al. (2019), “Definitional
proof-irrelevance without K”
[2]: Abel et al. (2017), “Decidability of
Conversion for Type Theory in Type
Theory”

. They free users
from the burden of proving scores of mostly trivial judgemental equal-
ities, and provide computation-by-normalization engines. Some sys-
tems [39, 50]

[50]: The Dedukti logical framework
[39]: Cockx et al. (2016), “Sprinkles of ex-
tensionality for your vanilla type theory”

go further by allowing user extensions to the built-in
equality checkers.

The situation is less pleasant in a proof assistant that supports ar-
bitrary user-definable theories, such as Andromeda 2 [9, 20]

[9]: Bauer et al. The Andromeda proof
assistant
[20]: Bauer et al. (2018), “Design and
Implementation of the Andromeda
Proof Assistant”

, where
in general no equality checking algorithm may be available. Never-
theless, the proof assistant should still provide support for equal-
ity checking that is easy to use and works well in the common, well-
behaved cases. For this purpose we have developed and implemented
a sound and extensible equality checking algorithm for user-definable
type theories.

The generality of type theories supported by Andromeda 2 presents
a significant challenge in devising a useful equality checking algo-
rithm. Many commonly used ideas and notions that one encounters
in specific type theories do not apply anymore: not every rule can be
classified either as an introduction or an elimination form, not every
equation as either a 𝛽- or an 𝜂-rule, all terms must be fully anno-
tated with types to ensure soundness, there may be no reasonable
notion of a normal form, or a neutral form, etc. And of course, the
user may easily define a theory whose equality checking is undecid-
able. In order to do better than just exhaustive proof search, some
compromises must therefore be made and design decisions taken:

1. We work in the fully general setting of standard type theories.
2. We prefer ease of experimentation at the expense of possible

non-termination or unpredictable behavior.
3. At the same time, soundness of the algorithm is paramount: any

equation verified by it must be derivable in the theory at hand.
4. The algorithm should work well on well-behaved theories, and

especially those seen in practice.

Themost prominent design goals missing from the above list are com-
pleteness and performance. The former cannot be achieved in full
generality, as there are type theories with undecidable equality check-
ing. We have expended enough energy looking for acceptably general
sufficient conditions guaranteeing completeness to state with confi-
dence that this task is best left for another occasion. Regarding per-
formance, we freely admit that equality checking in Andromeda 2 is
nowhere near the efficiency of established proof assistants. For this
we blame not only the immaturity of the implementation, but also
the generality of the situation, which simply demands that a price
be paid in exchange for soundness. We console ourselves with the
fact that our equality checker achieves soundness and complete user-
extensibility at the same time.
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12.1. Contributions

We present a general equality checking algorithm that is applicable
to a large class of type theories, the standard type theories (Defi-
nition 4.4.5). The algorithm (Section 15.2) is fashioned after equality
checking algorithms [3, 136] [136]: Stone et al. (2006), “Extensional

equivalence and singleton types”
[3]: Abel et al. (2012), “On Irrelevance
and Algorithmic Equality in Predicative
Type Theory”

that have a type-directed phase for ap-
plying extensionality rules (inter-derivable with 𝜂-rules), intertwined
with a normalization phase based on computation rules (𝛽-rules). For
the usual kinds of type theories (simply typed 𝜆-calculus, Martin-Löf
type theory, System F), the algorithm behaves like the well-known
standard equality checkers. We prove that our algorithm is sound
(Section 15.3).

We define a general notion of computation (Section 14.1) and exten-
sionality rules (Section 14.2), using the type-theoretic concept of an
object-invertible rule (Section 13.2). We also provide sufficient syntac-
tic criteria for recognizing such rules, together with a simple pattern-
matching algorithm for applying them. A third component of the algo-
rithm is a suitable notion of normal form, which guarantees correct
execution of normalization and coherent interaction of both phases
of the algorithm. In our setting, normal forms are determined by a
selection of principal arguments (Section 15.1). By varying these, we
obtain known notions, such as weak head-normal and strong normal
forms.

We implemented the algorithm in Andromeda 2 (Chapter 16). The user
need only provide the equality rules they wish to use, which the algo-
rithm automatically classifies either as computation or extensionality
rules, rejects those that are of neither kind, and selects appropriate
principal arguments.

Those readers who prefer to see examples before the formal devel-
opment, may first take a peek at Section 16.1, where we show how our
work allows one to implement extensional type theory, and use the
reflection rule to derive computation rules which are only available
in their propositional form in intensional type theory.



1: The instantiation 𝐼 should also be
derivable. But we first focus on the syn-
tactic part.

Patterns and Object-invertible
Rules 13.

The equality checking algorithm derives the target equation by apply-
ing inference rules. To determine whether a rule can be applied and
how it pattern matches it against parts of the target equation. We
therefore begin by studying the syntactic and type-theoretic proper-
ties of rules which ensure the soundness of pattern matching.

13.1. Patterns

In principle there aremany ways by which a judgement can be derived.
In order determine whether the judgement Θ;Γ ` j′ can be derived
with the rule Ξ =⇒ j, we must find an instantiation1 𝐼 of Ξ over Θ;Γ
such that 𝐼∗j = j′. We shall be primarily interested in rules where
such 𝐼 is unique, when it exists.

Definition 13.1.1 A raw rule Ξ =⇒ j is deterministic when for every
judgement Θ;Γ ` j′ there exists at most one instantiation 𝐼 of Ξ
over Θ;Γ such that 𝐼∗j= j′, called a matching instantiation. Whether a raw rule is deterministic may

depend on the entire type theory and
not just the rule itself.We refrain from trying to characterize the deterministic rules, and in-

stead observe that, given a deterministic rule

𝑅 = (M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ j)
and a judgement Θ;Γ ` j′ we may algorithmically compute 𝐼 such
that 𝐼∗j= j′, or decide that it does not exist. First of all, every object
metavariable of 𝑅must appear inj, or else 𝑅 wouldmatch inmultiple
ways the judgement Θ,Θ′; [] ` j, where Θ′ is a copy of Θ in which
each M𝑖 is replaced with M′

𝑖 . Therefore, for any instantiation

𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉
where ar(𝑒𝑖) = ar(B𝑖) = (𝑐𝑖 , 𝑛𝑖) and 𝑒𝑖 = {𝑥1 , . . . , 𝑥𝑛𝑖 }𝑒′𝑖 , the size of 𝐼∗j
equals or exceeds the size of each 𝑒′𝑖 . We may therefore look for an
instantiation that matchesΘ;Γ ` jby exhaustively searching through
all 𝑒′𝑖 ’s over Θ;Γ whose sizes are bounded by the size of j, of which
there are only finitely many. Of course, we are not suggesting that
anyone should use such an exhaustive search in practice. Instead, we
provide a simple syntactic criterion that makes a rule deterministic
and easy to match against.

Definition 13.1.2 Patterns are expressions in which every metavari-
able occurs at most once either in an application without argu-
ments M(), or in an argument of the form { ®𝑥}M(®𝑥), where ®𝑥 are the
only bound variables in scope. They are described by the grammar
in Figure 13.1.
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Type pattern 𝑃 ::= M() �� S(𝑞1 , . . . , 𝑞𝑛) if mv(𝑞𝑖) ∩mv(𝑞 𝑗) = ∅ for 𝑖 ≠ 𝑗

Term pattern 𝑝 ::= S(𝑞1 , . . . , 𝑞𝑛) if mv(𝑞𝑖) ∩mv(𝑞 𝑗) = ∅ for 𝑖 ≠ 𝑗

Argument pattern 𝑞 ::= { ®𝑥}M(®𝑥) �� 𝑃
�� 𝑝

Figure 13.1.: The syntax of patterns.

Reminder: notation mv()
The notation mv(𝑒) is for the set of
metavariables that appear in the ex-
pression 𝑒 .

Note thatM() can only appear as a type pattern, but not as a term pat-
tern. The reason for this lies in the definitions of computation rules
(Definition 14.1.1 Definition 14.1.2) which we shall see later on.

As defined, the patterns are linear in the sense that a metavariable
cannot appear several times, and first-order because patterns may
not appear under abstractions. Non-linearity is not an essential lim-
itation, as we shall see shortly. The restriction to first-order patterns
arises because in general a standard type theory may not satisfy the
strengthening principle which states that if ` {𝑥:𝐴}J is derivable and
𝑥 ∉ bv(J) then ` J is derivable. The principle allows a higher-order
pattern to safely extract an expression from within an abstraction, so
long as no bound variables escape their scopes.

Example 13.1.3 The head of the conclusion of a symbol rule

M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ bS(𝑀̂1 , . . . , 𝑀̂𝑛)

is a pattern because M̂𝑖 has required form {𝑥}M𝑖(®𝑥).

Example 13.1.4 Consider the 𝛽-rule for the first projection from a
binary product:

` A type ` B type ` s : A ` t : B

` fst(A, B, pair(A, B, s, t)) ≡ s : A

The left-hand side of the conclusion is not a pattern because the
metavariables A and B occur twice each. We may linearize the pat-
tern at the cost of equational premises:

` A1 type ` A2 type ` B1 type ` B2 type
` s : A2 ` t : B2 ` A1 ≡ A2 ` B1 ≡ B2

` fst(A1 , B1 , pair(A2 , B2 , s, t)) ≡ s : A1
(13.1)

The new rule is inter-derivable with the original one: From (13.1) we
can derive the original rule just by instantiating A1 and A2 with A
and similarly for B. For the other way round the derivation uses
congruence rules and TT-CONV-TM.

Example 13.1.5 Consider the rule stating that the identity function
is the neutral element for composition:

` A type ` B type ` f : A → B

` compose(A, B, f, λ(A, A, {𝑥}𝑥)) ≡ f : A → B
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The left-hand side of the conclusion is not a pattern because λ(A, A, {𝑥}𝑥)
is not a pattern. Once again we can remedy the situation by intro-
ducing an additional equational premise:

` A type ` B type ` f : A → B
` i : A → A ` i ≡ 𝜆(A, A, {𝑥}𝑥) : A → A

` compose(A, B, f, 𝑖) ≡ f : A → B

It is clear that the technique for linearizing rules to become patterns
works generally.

At the time of writing this thesis the
Andromeda 2 implementation of the
equality checking algorithm does not
yet support automatic generation of lin-
earized versions of rules. However, in
the common cases the user can apply
the described technique by hand.Proposition 13.1.6 If Ξ =⇒ b𝑝 is a rule such that 𝑝 is a pattern and

mv(𝑝) = |Ξ|obj then the rule is deterministic.

Reminder: object metavariables

The notation |Ξ|obj gives the set of
object metavariables of Ξ.

Proof. Consider a judgement Θ;Γ ` b′ 𝑒 , and instantiations 𝐽 and 𝐾
of Ξ over Θ;Γ such that 𝐽∗𝑝 = 𝐾∗𝑝 = 𝑒 . Then 𝐽 and 𝐾 agree on ob-
ject metavariables because they all appear in 𝑝, and on equational
metavariables because they must, as they can only map them to ★.

We shall use patterns to findmatching instantiations, when they exist.
For this purpose we define the following notation.

Definition 13.1.7 Given Ξ, a pattern 𝑝 over Ξ such thatmv(𝑝) = |Ξ|obj,
and an expression 𝑒 over Θ;Γ, we write

Ξ ` 𝑝 ⊲ 𝑡 ⇝ 𝐼 and Ξ ` 𝑝 ⊲ 𝑡 6⇝
respectively when 𝐼 is an instantiation of Ξ over Θ;Γ such that
𝐼∗𝑝 = 𝑡, and when there is no such instantiation.

The reader should convince themselves that there is an obvious al-
gorithm that computes from Ξ, 𝑝 and 𝑡 the unique 𝐼 such that Ξ `
𝑝 ⊲ 𝑡 ⇝ 𝐼, or decides that it does not exist.

13.2. Object-invertible rules

While patterns provide a syntactic criterion for deterministic rules, we
still need to consider derivability of pattern-induced instantiations.

Rules are used not only to derive judgements, but also to invert deriv-
able judgements to their premises, for the purpose of analyzing them.
For example, when a term is normalized, we decide what steps to take
by observing its structure, which amounts to applying an inversion
principle, such as Theorem 5.2.2. In general, we may invert a deriv-
able judgement Θ;Γ ` j′ using a rule

𝑅 = (M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ j)
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by finding a derivable instantiation 𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉 of its
premises over Θ;Γ such that 𝐼∗j = j′. If 𝐼 is found, the judgement
can be derived using the instantiation 𝐼∗𝑅,

Θ;Γ ` (𝐼(𝑘)∗B𝑘) 𝑒𝑘 for 𝑘 = 1, . . . , 𝑛

Θ;Γ ` 𝐼∗j
Under favorable conditions, it may happen that some of the above
premises are known to be derivable ahead of time, so there is no need
to rederive them. We are particularly interested in the case where all
the object premises are of this kind. To be able to express that a judge-
ment is derivable “modulo equalities” we need to explain in what
metacontext such a judgement appears, as the equational metavari-
ables need to remain in the metacontext. The following definition
makes that precise.

Definition 13.2.1 LetΞ = [M1:B1 , . . . ,M𝑛 :B𝑛] be ametacontext whose
equational metavariables are M𝑖1 , . . . ,M𝑖𝑚 . Given an instantiation 𝐼
of Ξ over Θ; [] such that |Ξ| ∩ |Θ | = ∅, the equational residue Ξ/𝐼
is the metacontext

Ξ/𝐼 = [Θ,M𝑖1 :𝐼(𝑖1)∗B𝑖1 , . . . ,M𝑖𝑚 :𝐼(𝑖𝑚 )∗B𝑖𝑚 ].
The residual instantiation 𝐼𝑟 of Ξ over Ξ/𝐼 and [] is defined by

𝐼𝑟(M𝑖) =
{
𝐼(M𝑖) if M𝑖 ∈ |Ξ|obj,
M̂𝑖 otherwise.

The condition that |Ξ| ∩ |Θ | = ∅ is inessential, as we can always re-
name metavariables accordingly. Without loss of generality the in-
stantiation 𝐼 is over an empty variable context, because the variable
context can be promoted to metacontext using Proposition 4.3.6.

With the definition of equational residues in hand we can finally de-
fine the kinds of rules that ensure derivability of object premises
when pattern-matching.

Definition 13.2.2 In a raw type theory, a derivable raw rule 𝑅 =
(Ξ =⇒ j) is object-invertible when the following holds: whenever 𝐼
instantiatesΞ overΘ; [], with ` Θ mctx and |Ξ|∩|Θ | = ∅, ifΘ; [] ` 𝐼∗j
is derivable then so is the residual instantiation 𝐼𝑟 .

Let us explain how object-invertible rules shall be used. Suppose
Ξ =⇒ 𝑠 : 𝐴 is object-invertible, Ξ =⇒ 𝑠 ≡ 𝑡 : 𝐴 is derivable, 𝐼 instan-
tiates Ξ over Θ;Γ, and Θ;Γ ` 𝐼∗𝑠 : 𝐼∗𝐴 is a given derivable judgement.
We would like to derive Θ;Γ ` 𝐼∗𝑠 ≡ 𝐼∗𝑡 : 𝐼∗𝐴 so that we may rewrite 𝐼∗𝑠
to 𝐼∗𝑡. Thus we must verify that 𝐼 is derivable. By object-invertibility
its object premises are derivable, so we only need to check its equa-
tional ones. The following proposition ensures that such a procedure
is valid.
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Proposition 13.2.3 Consider an object-invertible rule Ξ =⇒ j and
an instantiation 𝐼 over Θ;Γ, such that Θ;Γ ` 𝐼∗j is derivable. Then
𝐼 is derivable if, for every equational boundary B = { ®𝑥: ®𝐴} b in Ξ,
the judgement Θ;Γ ` (𝐼∗B) { ®𝑥}★ is derivable.

Proof. Let 𝐽 be the promotion of 𝐼 to (Θ, Γ) and the empty variable
context. Because the rule is object-invertible, 𝐽𝑟 is derivable. Next, we
promote each judgement from the statement to

(Θ, Γ); [] ` (𝐽∗B) { ®𝑥}★ . (13.2)

and observe that 𝐽 = 𝐾 ◦ 𝐽𝑟 , where 𝐾 is the instantiation of Ξ/𝐽 over
(Θ, Γ) and [] defined by

𝐾(M) =
{
M̂ if M ∈ |(Θ, Γ)|,
{ ®𝑥}★ otherwise.

Because 𝐽𝑟 is derivable, and 𝐾 is derivable thanks to derivability of
judgements (13.2), it follows that 𝐽 is derivable. Therefore, 𝐼 is deriv-
able too.

Example 13.2.4 Let us demonstrate how equational residues are
going to be used in rewriting. Suppose we have derived

Θ; [] ` fst(𝑈1 , 𝑉1 , pair(𝑈2 , 𝑉2 , 𝑢, 𝑣)) : 𝑈1 (13.3)

and would like to apply the 𝛽-rule (13.1) to it, i.e., we would like to
establish

Θ; [] ` fst(𝑈1 , 𝑉1 , pair(𝑈2 , 𝑉2 , 𝑢, 𝑣)) ≡ 𝑢 : 𝑈1 (13.4)

First, using Theorem 5.1.6, we extract from (13.1) the derivability of
its left-hand side

` A1 type ` A2 type ` B1 type ` B2 type
` s : A2 ` t : B2 ` A1 ≡ A2 by 𝜁 ` B1 ≡ B2 by 𝜉

` fst(A1 , B1 , pair(A2 , B2 , s, t)) : A1
(13.5)

where we labeled the equational premises with metavariables ζ

and ξ. We may compare (13.5) with (13.3) to get a matching instan-
tiation

𝐼 = 〈A1 ↦→𝑈1 , A2 ↦→𝑈2 , B1 ↦→𝑉1 , B2 ↦→𝑉2 , s↦→𝑢, t ↦→𝑣, ζ↦→★, ξ↦→★〉
of its premises over Θ; []. Now it would be a mistake to simply
instantiate (13.1) with 𝐼 because the equational premises ζ and ξ

may not be derivable (the object premises are derivable by The-
orem 5.1.6). However, because (13.5) is object-invertible by Corol-
lary 13.2.11, proved below, the residual instantiation

𝐼𝑟 = 〈A1 ↦→𝑈1 , A2 ↦→𝑈2 , B1 ↦→𝑉1 , B2 ↦→𝑉2 , s↦→𝑢, t ↦→𝑣, ζ↦→ζ, ξ↦→ξ〉,
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is derivable. Hence, we may instantiate (13.1) with 𝐼𝑟 to derive

Θ, 𝜁:(𝑈1 ≡ 𝑈2 by □), 𝜉:(𝑉1 ≡ 𝑉2 by □); [] `
fst(𝑈1 , 𝑉1 , pair(𝑈2 , 𝑉2 , 𝑢, 𝑣)) ≡ 𝑢 : 𝑈1.

Thus we must still verify Θ; [] ` 𝑈1 ≡ 𝑈2 and Θ; [] ` 𝑉1 ≡ 𝑉2, in
order to conclude (13.4), precisely as expected.

13.2.1. The natural for variables condition

Whether a rule is object-invertible depends not just on the rule itself,
but on the ambient type theory too, for it may happen that Θ;Γ ` 𝐼∗j
is not derivable by the rule under consideration, but by another one
that instantiates to the same conclusion.

Example 13.2.5 Consider the standard type theory whose specific
rules are

` 0 type ` 1 type ` u : 1

` v : 1

` T(v) type
` e : 0

` 0 ≡ 1

The derivable object rule

` e : 0

` T(e) type
is not object-invertible, because the instantiation 𝐼 = 〈e↦→u〉 yields
the derivable judgement []; [] ` T(u) type, but []; [] ` u : 0 is not
derivable.

We think of the type 0 as the empty type
or falsehood. The problematic equa-
tion 0 ≡ 1 then happens under the as-
sumption that we have an element of
the empty type, which is an expected be-
haviour in the usual formal systems.

In the previous example the culprit is the application of term conver-
sion to a metavariable. As it turns out, such conversions of variables
are the principal obstruction to object-invertibility, so we define a
syntactic property of judgements which prevents them.

Definition 13.2.6 An object judgement Θ;Γ ` J is natural for vari-
ables when the relation Θ;Γ `♮ J can be deduced using the rules
in Figure 13.2.

The point of this definition as the name suggests is that (meta)variables
in the derivation have natural types which is summarized in the fol-
lowing proposition. Reminder: Natural type

A natural type of a term is the one
that can be read off the term expres-
sion as specified in Definition 5.2.1.

Proposition 13.2.7 A derivable object judgement is natural for vari-
ables has a derivation in which any application of TT-META and TT-
VAR is not immediately followed by a conversion, unless it appears
in a subderivation of an equality judgement.

Proof. The claim is established by a straightforward induction on the
derivation of Θ;Γ `♮ Jwith the help of Theorem 5.2.2.
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Γ(a) = 𝐴

Θ;Γ `♮ a : 𝐴

a ∉ |Γ| Θ;Γ, a:𝐴 `♮ J[a/𝑥]
Θ;Γ `♮ {𝑥:𝐴}J

Θ(M) = ({ ®𝑥: ®𝐴} □ type)
Θ;Γ `♮ 𝑡𝑖 : 𝐴[®𝑡(𝑖)/®𝑥(𝑖)] for 𝑖 = 1, . . . , 𝑛

Θ;Γ `♮ M(𝑡1 , . . . , 𝑡𝑛) type

Θ(M) = ({ ®𝑥: ®𝐴} □ : 𝐵)
Θ;Γ `♮ 𝑡𝑖 : 𝐴[®𝑡(𝑖)/®𝑥(𝑖)] for 𝑖 = 1, . . . , 𝑛

Θ;Γ `♮ M(𝑡1 , . . . , 𝑡𝑛) : 𝐵[®𝑡/®𝑥]

Rule for S is M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ bS(𝑀̂1 , . . . , 𝑀̂𝑛)
𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉

Θ;Γ `♮ (𝐼(𝑖)∗B𝑖) 𝑒𝑖 if B𝑖 is an object boundary

Θ;Γ `♮ b′ S(𝑒1 , . . . , 𝑒𝑛) Figure 13.2.: Object judgements that are
natural for variables.

In the Example 13.2.5 the last derived rule is not natural for variables,
while all the other specific object rules are.

13.2.2. Sufficient conditions for object-invertibility

The obvious pattern-matching algorithm scans a pattern and com-
pares it to a term. It instantiates metavariables one by one and pos-
sibly out of order, which results in a chain of instantiations, each of
which instantiates just one metavariable. Let us study such instanti-
ations.

Definition 13.2.8 Let Ξ = [M1:B1 , . . . ,M𝑛 :B𝑛] be ametacontext, and
𝑒 an argument over Ξ(𝑘) and the empty variable context with ar(𝑒) =
ar(B𝑘). The basic instantiation 𝕀(Ξ,M𝑘 , 𝑒) is defined by

𝕀(Ξ,M𝑘 , 𝑒)(M𝑖) =
{
M̂𝑖 if M𝑘 ≠ M𝑖 ,
𝑒 if M𝑘 = M𝑖 .

(13.6)

It is an instantiation of Ξ over the metacontext

𝔼(Ξ,M𝑘 , 𝑒) = [M1:B′
1 , . . . ,M𝑘−1:B′

𝑘−1 ,M𝑘+1:B′
𝑘+1 , . . . ,M𝑛 :B′

𝑛]
and the empty variable context, where B′

𝑗 = 𝕀(Ξ,M𝑘 , 𝑒)(𝑗)∗B𝑗 .

Intuition behind a basic instantiation is
that it instantiates just one metavari-
able and leaves the rest in place.

We can now state a sufficient condition for when a basic instantiation
is derivable.

Lemma 13.2.9 A basic instantiation 𝕀(Ξ,M𝑘 , 𝑒) is derivable if ` Ξ mctx
and Ξ(𝑘) ` B𝑘 𝑒 , in which case ` 𝔼(Ξ,M𝑘 , 𝑒) mctx also holds.

Proof. For 𝑖 < 𝑘, the judgement 𝔼(Ξ,M𝑘 , 𝑒) ` (𝕀(Ξ,M𝑘 , 𝑒)(𝑖)∗B𝑖) M̂𝑖

holds by abstraction and the metavariable rule TT-META, where we
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invert ` Ξ mctx to validate the abstractions.

The judgement 𝔼(Ξ,M𝑘 , 𝑒) ` (𝕀(Ξ,M𝑘 , 𝑒)(𝑘)∗B𝑘) 𝑒 follows by weakening
from Ξ(𝑘) ` B𝑘 𝑒 because 𝔼(Ξ,M𝑘 , 𝑒)(𝑘) = Ξ(𝑘).

For 𝑖 > 𝑘, we again use abstraction and the metavariable rule, where
abstractions are now validated by inversion of ` Ξ mctx and Theo-
rem 5.1.4 applied to 𝕀(Ξ,M𝑘 , 𝑒)(𝑖).
The derivation of ` 𝔼(Ξ,M𝑘 , 𝑒) mctx has two parts. First, 𝔼(Ξ,M𝑘 , 𝑒)(𝑘)
coincides with Ξ(𝑘) and so we just reuse ` Ξ(𝑘) mctx. For 𝑖 > 𝑘, we
derive 𝔼(Ξ,M𝑘 , 𝑒)(M𝑖 ) ` B′

𝑖 as the instantiation of Ξ(𝑖) ` B𝑖 by

𝕀(Ξ,M𝑘 , 𝑒)(𝑖) ∈ Inst(Ξ(𝑖) ,𝔼(Ξ,M𝑘 , 𝑒)(M𝑖 ) , []),
which is observed to be derivable.

We define particular compositions of chains of basic instantiations,
as follows. Given a metacontext Ξ = [M1:B1 , . . . ,M𝑛 :B𝑛] and an in-
stantiation

𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉
of Ξ over Θ; [], define the instantiation

𝕁Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚 ) ∈ Inst(Ξ, 𝔽Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚 ), [])
and the metacontext 𝔽Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚 ) by

𝔽Ξ,Θ,𝐼() = 〈Θ,Ξ〉
𝕁Ξ,Θ,𝐼() = 〈M1 ↦→M̂1 , . . . ,M𝑛 ↦→M̂𝑛〉

𝔽Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚+1) = 𝔼(𝔽Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚 ),M𝑖𝑚+1 , 𝑒𝑖𝑚+1)
𝕁Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚+1) = 𝕀(𝔽Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚 ),M𝑖𝑚+1 , 𝑒𝑖𝑚+1) ◦

𝕁Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚 )
In the above definition we require |Ξ| ∩ |Θ | = ∅ and that M𝑖1 , . . . ,M𝑖𝑚
are all distinct. We elide the subscripts and write 𝕁(M𝑖1 , . . . ,M𝑖𝑚 ) and
𝔽(M𝑖1 , . . . ,M𝑖𝑚 ) when no confusion can arise.

The condition |Ξ|∩ |Θ | = ∅ is inessential
due to a simple renaming of metavari-
ables.

A straightforward induc-
tion shows that

𝔽Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚 )(M𝑗) = 𝕁Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚 )∗B𝑗

for any M𝑗 ∈ |Ξ| \ {M𝑖1 , . . . ,M𝑖𝑚 }. The instantiation 𝕁Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚 )
plays a role in proving object-invertibility, because

{M𝑖1 , . . . ,M𝑖𝑚 } = |Ξ|obj
implies

𝕁Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚 ) = 𝐼𝑟 and 𝔽Ξ,Θ,𝐼(M𝑖1 , . . . ,M𝑖𝑚 ) = Ξ/𝐼.
We are now in possession of all the ingredients necessary to relate
patternmatching and object-invertibility. Recall that, given a ruleΞ =⇒
b𝑝 whose head is a pattern 𝑝 and an instantiation 𝐼 of Ξ over Θ; [],
we would like to show that the residual instantiation 𝐼𝑟 is derivable.
The following lemma, whose purpose we explain shortly, is a stepping
stone to accomplishing the goal.
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Lemma 13.2.10 In a standard type theory, let Ξ =⇒ b𝑝 be a deriv-
able object rule which is natural for variables, 𝑝 a pattern, and 𝐼
an instantiation of Ξ = [M1:B1 , . . . ,M𝑛 :B𝑛] over Θ; [] such that
|Ξ| ∩ |Θ | = ∅, and Θ; [] ` 𝐼∗(b𝑝 ) is derivable.
Suppose ®𝑁 = (𝑁1 , . . . , 𝑁𝑚) is a sequence of distinct metavariables
such that {𝑁1 , . . . , 𝑁𝑚} ⊆ |Ξ|, mv(b) ⊆ {𝑁1 , . . . , 𝑁𝑚} ∪ mv(𝑝), and
both ` 𝔽Θ,Ξ,𝐼( ®𝑁) mctx and 𝕁Θ,Ξ,𝐼( ®𝑁) are derivable. Then ®𝑁 can be
extended to a sequence of distinct metavariables ®𝑁′ = (𝑁1 , . . . , 𝑁ℓ )
such that {𝑁1 , . . . , 𝑁ℓ } = {𝑁1 , . . . , 𝑁𝑚}∪mv(𝑝), and both ` 𝔽( ®𝑁′) mctx
and 𝕁( ®𝑁′) are derivable.

Let us explain how the lemma shall be used. As noted above, 𝐼𝑟 co-
incides with 𝕁( ®𝑁) when ®𝑁 lists all of |Ξ|obj. Therefore, we may es-
tablish derivability of 𝐼𝑟 by starting with ®𝑁 = () and extending it with
metavariables until it encompasses |Ξ|obj. The lemma guarantees that
one such extension step can be done with the aid of patterns in a way
that preserves derivability of 𝕁( ®𝑁).

Proof. Let 𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉. We proceed by induction on the
structure of 𝑝, and elide the subscripts to keep the notation shorter.

By definition of patterns 𝑝 cannot be a
term metavariable, so there is no sepa-
rate case for that in the proof.

Case 𝑝 = M𝑘 , B𝑘 = (□ type), and b = (□ type): If M𝑘 appears in ®𝑁 we
let ℓ = 𝑚 and we are done. Otherwise we set ℓ = 𝑚+1 and 𝑁𝑚+1 = M𝑘 .
Because composition of derivable instantiations is derivable, we only
need to show that 𝕀(𝔽( ®𝑀),M𝑘 , 𝑒𝑘) is derivable, which by Lemma 13.2.9
reduces to

𝔽( ®𝑁)(M𝑘 ); [] ` (𝕁( ®𝑁)∗B𝑘) 𝑒𝑘 ,
which equals

𝔽( ®𝑁)(M𝑘 ); [] ` 𝑒𝑘 type.

It is derivable by weakening from the assumption Θ; [] ` 𝑒𝑘 type.

Case 𝑝 = S(𝑞1 , . . . , 𝑞𝑚): Suppose the symbol rule for S is

M′
1:B

′
1 , . . . ,M

′
𝑗 :B

′
𝑗 =⇒ b′S(M̂′1 , . . . , M̂′

𝑗) .

By applying Corollary 5.3.2 to Ξ; [] ` bS(®𝑞) and letting the instantia-
tion 𝐾 = [M′

1 ↦→𝑞1 , . . . ,M′
𝑗 ↦→𝑞 𝑗], we obtain for 𝑖 = 1, . . . , 𝑗 derivations

of
Ξ; [] ` (𝐾(𝑖)∗B′

𝑖) 𝑞𝑖 . (13.7)

Similarly, from derivability of Θ; [] ` (𝐼∗b)S(𝐼∗®𝑞) we obtain derivability
of

Θ; [] ` ((𝐼∗𝐾)(𝑖)∗B′
𝑖) 𝐼∗𝑞𝑖 , (13.8)

which is equal to
Θ; [] ` 𝐼∗((𝐾(𝑖)∗B′

𝑖) 𝑞𝑖 ). (13.9)

We define ®𝐿0 , . . . , ®𝐿 𝑗 such that ®𝐿0 = ®𝑁 , and for 𝑖 = 1, . . . , 𝑗, the se-
quence ®𝐿𝑖 extends ®𝐿𝑖−1 by mv(𝑞𝑖), and both ` 𝔽( ®𝐿𝑖) mctx and 𝕁( ®𝐿𝑖) are
derivable. We may then finish the proof by taking ®𝑁′ = ®𝐿 𝑗 . Assuming
®𝐿𝑖−1 has been constructed, we consider two cases.
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First, if 𝑞𝑖 is a non-abstracted object pattern then we obtain ®𝐿𝑖 by
applying the induction hypothesis to (13.7), (13.9) and ®𝐿𝑖−1. We may do
so because mv(𝐾(𝑖)∗B′

𝑖) ⊆ mv(𝑞1) ∪ · · · ∪ mv(𝑞𝑖−1), which is contained
in ®𝐿𝑖−1.
Second, if 𝑞𝑖 = { ®𝑥}M𝑘(®𝑥) we proceed as follows. If M𝑘 appears in
®𝐿𝑖−1, we take ®𝐿𝑖 = ®𝐿𝑖−1 and we are done. Otherwise, we take ®𝐿𝑖 =
( ®𝐿𝑖−1 ,M𝑘). We need to show derivability of ` 𝔽( ®𝐿𝑖) mctx and 𝕁( ®𝐿𝑖). Be-
cause 𝕁( ®𝐿𝑖) = 𝕀(𝔽( ®𝐿𝑖−1),M𝑘 , 𝑒𝑘) ◦ 𝕁( ®𝐿𝑖−1) and 𝕁( ®𝐿𝑖−1) is derivable it
suffices to show that 𝕀(𝔽( ®𝐿𝑖−1),M𝑘 , 𝑒𝑘) is derivable, and therefore by
Lemma 13.2.9 that

𝔽( ®𝐿𝑖−1)(M𝑘 ); [] ` (𝕁( ®𝐿𝑖−1)∗B𝑘) 𝑒𝑘 . (13.10)

We claim that (13.10) is just a weakening of (13.8). Obviously, 𝔽( ®𝐿𝑖−1)(M𝑘 )
extends Θ and 𝐼∗𝑞𝑖 = 𝑒𝑘 . It remains to be seen that 𝕁( ®𝐿𝑖−1)∗B𝑘 and
(𝐼∗𝐾)(𝑖)∗B′

𝑖 are the same. The judgement (13.7) equals

Ξ; [] ` (𝐾(𝑖)∗B′
𝑖) { ®𝑥}M𝑘(®𝑥) .

By the naturality-for-variables assumption it is derivable without con-
versions, which is only possible if 𝐾(𝑖)∗B′

𝑖 is B𝑘 . Therefore,

(𝐼∗𝐾)(𝑖)∗B′
𝑖 = 𝐼∗(𝐾(𝑖)∗B′

𝑖) = 𝕁( ®𝐿𝑖−1)∗(𝐾(𝑖)∗B′
𝑖) = 𝕁( ®𝐿𝑖−1)∗B𝑘 ,

where the second step is valid because mv(𝐾(𝑖)∗B′
𝑖) ⊆ mv(𝑞1) ∪ · · · ∪

mv(𝑞𝑖−1), which is contained in ®𝐿𝑖−1.

We can now finally state the sufficient syntactic conditions for a rule
to be object-invertible.

Corollary 13.2.11 In a standard type theory, consider a derivable fini-
tary object rule Ξ =⇒ b𝑝 which is natural for variables. If 𝑝 is a
pattern and mv(𝑝) = |Ξ|obj then the rule is object-invertible.

Proof. Consider an instantiation 𝐼 of Ξ over Θ; [], such that ` Θ mctx
and Θ; [] ` (𝐼∗b) 𝐼∗𝑝 are derivable. Without loss of generality we may
assume |Ξ| ∩ |Θ | = ∅.
We apply Lemma 13.2.10 with the empty sequence ®𝑁 = (), noting that
mv(b) ⊆ mv(𝑝), that 𝔽() = 〈Θ,Ξ〉 and that ` 〈Θ,Ξ〉 mctx is derivable
because the rule is finitary and we assumed ` Θ mctx. This way we
obtain a sequence ®𝑁′ = (𝑁′

1 , . . . , 𝑁
′
ℓ ) such that mv(𝑝) = {𝑁′

1 , . . . , 𝑁
′
ℓ }

and 𝕁( ®𝑁′) is derivable. Because mv(𝑝) = |Ξ|obj, it follows that 𝕁( ®𝑁′)
coincides with 𝐼𝑟 , hence it is derivable too.



Computation and Extensionality
Rules 14.

14.1. Computation rules

The equality checking algorithm uses two kinds of equational rules,
which we describe here and prove that they have the desired proper-
ties. First, we have the rules that govern normalization.

Definition 14.1.1 A derivable finitary rule Θ =⇒ 𝐴 ≡ 𝐵 is a type com-
putation rule if Θ =⇒ 𝐴 type is deterministic and object-invertible.

Definition 14.1.2 A derivable finitary rule Θ =⇒ 𝑢 ≡ 𝑣 : 𝐴 is a term
computation rule if 𝑢 is a term symbol application and the rule
Θ =⇒ 𝑢 : 𝜏Θ;[](𝑢) is deterministic and object-invertible.

The reason behind the first condition in the definition of a term com-
putation rule is that for term symbol applications Proposition 5.3.1
holds, which is needed in the proof of soundness (Theorem 15.3.1). We
exhibit in Example 14.2.4 what can go wrong if we allow for a metavari-
able as the lefthand-side of the equation. One might hope that the
second condition in Definition 14.1.2 could be relaxed to Θ =⇒ 𝑢 : 𝐴.
However, the additional flexibility is only apparent, for if a term has
a type then it has the natural type as well. In any case, in the proofs
of soundness (Theorem 15.3.1, Theorem 15.3.2) we rely on having the
natural type.

A computation rule may be recognized using the following criterion.

Proposition 14.1.3 In a standard type theory:

1. A derivable finitary rule Ξ =⇒ 𝑃 ≡ 𝐵 is a type computation
rule if 𝑃 is a type pattern, mv(𝑃) = |Ξ|obj, and Ξ =⇒ 𝑃 type is
natural for variables.

2. A derivable finitary ruleΞ =⇒ 𝑝 ≡ 𝑣 : 𝐴 is a term computation
rule if 𝑝 is a term pattern, mv(𝑝) = |Ξ|obj, and Ξ =⇒ 𝑝 : 𝜏Ξ;[](𝑝)
is natural for variables.

The syntactic criterion for computation
rules is of course derived from the
syntactic criterion for object-derivable
rules from Corollary 13.2.11.

Proof. To prove the claims, observe that Ξ =⇒ 𝑃 type is derivable
by Theorem 5.1.6, and Ξ =⇒ 𝑝 : 𝜏Ξ;[](𝑝) by Theorem 5.1.6 and Corol-
lary 5.3.3. Observe also that mv(𝑃) = |Ξ|obj and mv(𝑝) = |Ξ|obj. Then ap-
ply Proposition 13.1.6 and Corollary 13.2.11 respectively to Ξ =⇒ 𝑃 type
and to Ξ =⇒ 𝑝 : 𝜏Ξ;[](𝑝).

Example 14.1.4 Typical 𝛽-rules satisfy the conditions of Proposi-
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tion 14.1.3, after their left-hand sides have been linearized, as in
Example 13.1.4. Another example is the 𝛽-rule for application

` A type ` {𝑥:A} B type ` {𝑥:A} s : B(𝑥) ` t : A

` apply(A, {𝑥}B(𝑥), λ(A, {𝑥}B(𝑥), {𝑥}s(𝑥)), t) ≡ s(t) : B(t)
whose linearized form is

` A1 type ` {𝑥:A1} B1 type
` A2 type ` {𝑥:A2} B2 type
` {𝑥:A2} s : B2(𝑥) ` t : A1

` A1 ≡ A2 ` {𝑥:A1}B1(𝑥) ≡ B2(𝑥)
` apply(A1 , {𝑥}B1(𝑥), λ(A2 , {𝑥}B2(𝑥), {𝑥}s(𝑥)), t) ≡ s(t) : B1(t)

which satisfies Proposition 14.1.3.

Example 14.1.5 We also allow the somewhat unusual rule

` U type

` A type

` A ≡ U

because it allows us to dispense with all questions about equality
of types in case we want to work with an uni-typed theory (some
would call it untyped).

Example 14.1.6 A class of rules that qualify as computational rules
are also the specific equality rules added in definitional extension
from Example 9.3.5. The left-hand side of the equality rule

` B𝑖 M𝑖 for 𝑖 = 1, . . . , 𝑛

` bS(M̂1 , . . . , M̂𝑛) ≡ 𝑒

constitutes a pattern because it is just a generically applied symbol
and the derivation is natural for variables as it is just an application
of the specific rule. Thus when extending a type theory with new
definitions, we can always compute the newly defined symbol by
adding the definitional equality to the set of computation rules of
the equality checking algorithm.

14.2. Extensionality rules

The second kind of rules is used by the algorithm to reduce an equa-
tion to subordinate equations by matching its type.

Definition 14.2.1 An extensionality rule is a derivable finitary rule
of the form

Θ, s:(□ : 𝐴), t:(□ : 𝐴),Φ =⇒ s ≡ t : 𝐴
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such that Φ contains only equational premises, and Θ =⇒ 𝐴 type
is deterministic and object-invertible.

An extensional rule may be recognized with the following criterion.

Proposition 14.2.2 In a standard type theory, a derivable finitary
rule of the form

Ξ, s:(□ : 𝑃), t:(□ : 𝑃),Φ =⇒ s ≡ t : 𝑃

is an extensionality rule if Φ contains only equational premises, 𝑃
is a type pattern, mv(𝑃) = |Ξ|obj, and Ξ =⇒ 𝑃 type is natural for
variables.

Just like for computatuon rules, the syn-
tactic criterion for extensionality rules
is derived from the syntactic criterion
for object-derivable rules from Corol-
lary 13.2.11.

Proof. Apply Proposition 13.1.6 and Corollary 13.2.11 to Ξ =⇒ 𝑃 type.

Extensionality rules that one finds in practice typically satisfy the
above syntactic condition, evenwithout linearization. Here are a few.

Example 14.2.3 Extensionality rules typically state that elements
of a type are equal when their parts are equal. For example, ex-
tensionality for simple products states that pairs are equal if their
components are equal:

` A type ` B type ` s : A × B ` t : A × B
` fst(A, B, s) ≡ fst(A, B, t) : A ` snd(A, B, s) ≡ snd(A, B, t) : B

` s ≡ t : A × B
(14.1)

Similarly, the extensionality rule for dependent functions states
that they are equal if their generic applications are equal:

` A type ` {𝑥:A} B type
` s : Π(A, {𝑥}B(𝑥)) ` t : Π(A, {𝑥}B(𝑥))

` {𝑥:A} apply(A, {𝑥}B(𝑥), s, x) ≡ apply(A, {𝑥}B(𝑥), t, x) : B(𝑥)
` s ≡ t : Π(A, {𝑥}B(𝑥))

The above is not to be confused with propositional function ex-
tensionality, which is a certain term that maps point-wise proposi-
tional equality of functions to their propositional equality.

Example 14.2.4 Some extensionality rules have no equational premises.
The first one that comes tomind is the rule stating that all elements
of the unit type are equal:

` s : unit ` t : unit

` s ≡ t : unit



14. Computation and Extensionality Rules 127

The corresponding 𝜂-rule (★ is the canonical inhabitant of unit)

` t : unit

` t ≡ ★

cannot be incorporated as a computation rule naively because the
bare metavariable on the left-hand side matches any term, even if
its type is not (judgementally equal to) unit. Since our normaliza-
tion procedure in Section 15.1 does not check for equality of types
separately, such rules do not behave well as computation rules. An-
other rule of this kind is the judgemental variant of Uniqueness of
identity proofs (UIP) which equates any two proofs of a proposi-
tional identity:

` A type ` a : A ` b : A ` p : Id(A, a, b) ` q : Id(A, a, b)
` p ≡ q : Id(A, a, b)

The corresponding 𝜂-rule is as troublesome as the one for unit:

` A type ` a : A ` p : Id(A, a, a)
` p ≡ refl(A, a) : Id(A, a, a)

The principle has been used, for example, in the cubical type theory
XTT for Bishop sets [135] [135]: Sterling et al. (2021), A Cubical

Language for Bishop Sets
.

Here is one last example:

` A type

` ‖A‖ type

` A type ` t : A

` |t| : ‖A‖

` A type ` u : ‖A‖ ` v : ‖A‖
` u ≡ v : ‖A‖

The above rules describe a kind of “judgemental truncation”, which
is like the propositional truncation from homotopy type theory, ex-
cept that it equates all terms of ‖A‖ judgementally. It is unclear
what elimination rule of judgemental truncation would be, but one
is reminded of the proof-irrelevant propositions [58] [58]: Gilbert et al. (2019), “Definitional

proof-irrelevance without K”
.



The algorithm 15.
The equality checking algorithm, precisely stated in Section 15.2, has
two phases: a type-directed phase for applying extensionality rules,
intertwined with a normalization phase based on computation rules.
The rough outline of the algorithm is in the following diagram.

Normalization phase Type-directed phase

compare subexpressions

auxiliary equations

normalize type of equation

no more ext. rules

normalize
subexpressions

subsidiary
equalities

𝐴 ≡ 𝐵 by □ 𝑠 ≡ 𝑡 : 𝑇 by □

computation rules extensionality rules

The algorithm takes as input a derivable equality boundary and ei-
ther outputs a derivable equality judgement whose boundary is the
one given as input, or fails to find a derivation. If the input bound-
ary is a type equality boundary, the algorithm goes directly to the
normalization phase which is parametrized by the computation rules
and principal arguments defined in Section 15.1. For a term equality
boundary the algorithm first goes to the type-directed phase which
is parametrized by the extensionality rules.

In this chapter we specify the algorithm (Section 15.1, Section 15.2),
prove that it is sound in Section 15.3 and discuss some of the limits
and design choices in Section 15.4.
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15.1. Principal arguments and normalization

Normalization rewrites an expression S(𝑒1 , . . . , 𝑒𝑛) by normalizing some
of the arguments 𝑒1 , . . . , 𝑒𝑛 , applying a computation rule, and repeat-
ing the process. We say that an argument 𝑒𝑖 (or more precisely, its
position 𝑖) is principal for S if it is so normalized. By varying the selec-
tion of principal arguments we may control the algorithm to compute
various kinds of normal form. For example, in 𝜆-calculus the weak-
head normal form is obtained when the only principal argument is
the head of an application, while taking all arguments to be princi-
pal leads to the strong normal form. Our algorithm is flexible in this
regard, as it takes the information about principality of arguments
as input. In Section 15.4.1 we discuss how appropriate principal argu-
ments can be chosen.

In specific cases normal forms are characterized by their syntactic
structure, for example a normal form in the 𝜆-calculus is an expres-
sion without 𝛽-redeces. One then proves that the normalization pro-
cedure always leads to a normal form. We are faced with a general sit-
uation in which no such syntactic characterization is available. Luckily,
the algorithm never needs to recognize normal forms, although we do
have to keep track of which expressions have already been subjected
to the normalization procedure, so that we avoid normalizing them
again.

Describing neutral forms is another ap-
proach to recognise which arguments
need not be normalized. We briefly dis-
cuss this option in Section 15.4.

Normalization is parametrized by the following data:

1. a standard type theory 𝑇 ,
2. a family C of computation rules for 𝑇 (Definition 14.1.1, Defini-

tion 14.1.2),
3. for each symbol S taking 𝑘 arguments, a set ℘(S) ⊆ {1, . . . , 𝑘}

of its principal arguments,

It has three interdependent variations:

Θ;Γ ` B𝑒 ⊲ 𝑒′ normalize argument 𝑒 to 𝑒′,
Θ;Γ ` bS(®𝑒) ⊲p S(®𝑒′) normalize the principal arguments of S,

Θ;Γ ` b 𝑒 ⊲c 𝑒′ use a computation rule to rewrite 𝑒 to 𝑒′.

Specifically,

Θ;Γ ` (𝐴 ⊲ 𝐴′) type and Θ;Γ ` 𝑡 ⊲ 𝑡′ : 𝐵
respectively express the facts that the type 𝐴 normalizes to 𝐴′ and
the term 𝑡 to 𝑡′. Figure 15.1 specifies the normalization procedure. Note
that normalization is mutually recursive with equality checking, be-
cause the rule for ⊲c resolves equational premises using equational
checking from Figure 15.2. We omitted the clauses for metavariable
applications, as they are analogous to symbol applications. That is,
for the purposes of normalization and equality checking, an object
metavariableM with boundary Band arity ar(B) = (𝑐, 𝑛) is construed
as a primitive symbol of syntactic class 𝑐 taking 𝑛 term arguments.

Normalization of arguments is syntax-directed and deterministic, and
so is normalization of principal arguments. However, the applications
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of computation rules need not terminate, and the computation rules
may be a source of non-determinism when several apply to the same
expression. We discuss strategies for dealing with these issues in Sec-
tion 15.4.2.

(Ξ =⇒ b′ 𝑝 ≡ 𝑣 ) ∈ C Ξ ` 𝑝 ⊲ 𝑠 ⇝ 𝐼
Θ;Γ ` 𝐼∗(B𝑒 ∼ 𝑒′ ) for (M:B𝑒 ≡ 𝑒′ by □ ) ∈ Ξ

Θ;Γ ` b 𝑠 ⊲c 𝐼∗𝑣

Rule for S is M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ b′ S(M̂1 , . . . , M̂𝑛)
Θ;Γ ` (〈M1 ↦→𝑒1 , . . . ,M𝑖−1 ↦→𝑒𝑖−1〉B𝑖) 𝑒𝑖 ⊲ 𝑒′𝑖 if 𝑖 ∈ ℘(S)

𝑒𝑖 = 𝑒′𝑖 if 𝑖 ∉ ℘(S)
Θ;Γ ` bS(®𝑒) ⊲p S(®𝑒′)

Θ;Γ ` bS(®𝑒) ⊲p S(®𝑒′) Θ;Γ ` bS(®𝑒′) ⊲c 𝑒′′ Θ;Γ ` b 𝑒′′ ⊲ 𝑒′′′

Θ;Γ ` bS(®𝑒) ⊲ 𝑒′′′

Θ;Γ ` bS(®𝑒) ⊲p S(®𝑒′)
Ξ ` 𝑝 ⊲ S(®𝑒′) 6⇝ for (Ξ =⇒ b′ 𝑝 ≡ 𝑣 ) ∈ C

Θ;Γ ` bS(®𝑒) ⊲ S(®𝑒′)

a ∉ |Γ| Θ;Γ, a : 𝐴 ` (B[a/𝑥]) 𝑒[a/𝑥] ⊲ 𝑒′
Θ;Γ ` {𝑥:𝐴} B{𝑥}𝑒 ⊲ {𝑥}𝑒′[𝑥/a]

Θ;Γ ` a ⊲ a : 𝐴 Θ;Γ ` b★ ⊲★ Figure 15.1.: Normalization with com-
putation rules C and principal argu-
ments ℘.

15.2. Type-directed and normalization phase

We are finally ready to describe equality checking, which is performed
by several mutually recursive phases:

Θ;Γ ` B𝑒 ∼ 𝑒′ 𝑒 and 𝑒′ are equal arguments
Θ;Γ ` 𝑠 ∼e 𝑡 : 𝐴 𝑠 and 𝑡 are extensionally equal
Θ;Γ ` 𝑠 ∼n 𝑡 : 𝐴 normalized terms 𝑠 and 𝑡 are equal
Θ;Γ ` 𝐴 ∼n 𝐵 normalized types 𝐴 and 𝐵 are equal

The first one is the general comparison of arguments 𝑒 and 𝑒′ of an
object boundary B, the second one the type-directed phase which
applies extensionality rules by matching the type, and the third the
normalization phase which compares normalized expressions. We re-
view the inductive clauses specifying these, shown in Figure 15.2. They
are parametrized by a standard type theory 𝑇 , a family of extension-
ality rules E over 𝑇 , a family of computation rules C over 𝑇 , and a
specification of principal arguments ℘. We again treat metavariables
as primitive symbols.

General checkingΘ;Γ ` B𝑒 ∼ 𝑒′ descends under abstractions. It com-
pares types by normalizing them, as there are no extensionality rules
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Θ;Γ ` (𝐴 ⊲ 𝐴′) type Θ;Γ ` 𝑢 ∼e 𝑣 : 𝐴′

Θ;Γ ` 𝑢 ∼ 𝑣 : 𝐴

Θ;Γ ` (𝐴 ⊲ 𝐴′) type Θ;Γ ` (𝐵 ⊲ 𝐵′) type Θ;Γ ` (𝐴′ ∼n 𝐵′) type
Θ;Γ ` (𝐴 ∼ 𝐵) type

a ∉ |Γ| Θ;Γ, a:𝐴 ` (B[a/𝑥]) 𝑒[a/𝑥] ∼ 𝑒′[a/𝑥]
Θ;Γ ` {𝑥:𝐴} B{𝑥}𝑒 ∼ {𝑥}𝑒′

(Ξ, s:(□ : 𝑃), t:(□ : 𝑃),Φ =⇒ s ≡ t : 𝑃) ∈ E Ξ ` 𝑃 ⊲ 𝐴⇝ 𝐼
Θ;Γ ` 𝐼∗(B𝑒 ∼ 𝑒′ ) for (M:B𝑒 ≡ 𝑒′ by □ ) ∈ Ξ

Θ;Γ ` 〈𝐼 , s↦→𝑢, t ↦→𝑣〉∗(B𝑒 ∼ 𝑒′ ) for (M:B𝑒 ≡ 𝑒′ by □ ) ∈ Φ

Θ;Γ ` 𝑢 ∼e 𝑣 : 𝐴

Ξ ` 𝑃 ⊲ 𝐴 6⇝ for (Ξ, s:(□ : 𝑃), t:(□ : 𝑃),Φ =⇒ s ≡ t : 𝑃) ∈ E

Θ;Γ ` 𝑢 ⊲ 𝑢′ : 𝐴 Θ;Γ ` 𝑣 ⊲ 𝑣′ : 𝐴 Θ;Γ ` 𝑢′ ∼n 𝑣′ : 𝐴
Θ;Γ ` 𝑢 ∼e 𝑣 : 𝐴

Θ;Γ ` a ∼n a : 𝐴

Rule for S is M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ b′ S(M̂1 , . . . , M̂𝑛)
Θ;Γ ` (〈M1 ↦→𝑒1 , . . . ,M𝑖−1 ↦→𝑒𝑖−1〉∗B𝑖) 𝑒𝑖 ∼n 𝑒′𝑖 if 𝑖 ∈ ℘(S)
Θ;Γ ` (〈M1 ↦→𝑒1 , . . . ,M𝑖−1 ↦→𝑒𝑖−1〉∗B𝑖) 𝑒𝑖 ∼ 𝑒′𝑖 if 𝑖 ∉ ℘(S)

Θ;Γ ` bS(®𝑒) ∼n S( ®𝑒′) Figure 15.2.: Equality checking with ex-
tensionality rules E and principal argu-
ments ℘.

for types. Terms are compared by the type-directed phase, where the
type is first normalized so that it can be matched against extension-
ality rules.

The type-directed phase checks Θ;Γ ` 𝑢 ∼e 𝑣 : 𝐴 by looking for an ex-
tensionality rule that matches 𝐴, and applying the rule to reduce the
task to verification of the equational premises of the rule. The clause
uses the notation B𝑒 ≡ 𝑒′ by □ , which turns an object boundary into
an equation boundary, as follows:

(□ : 𝐴) 𝑠 ≡ 𝑡 by □ = (𝑠 ≡ 𝑡 : 𝐴 by □),
(□ type)𝐴 ≡ 𝐵 by □ = (𝐴 ≡ 𝐵 by □),

({𝑥:𝐴} B) {𝑥}𝑒 ≡ {𝑥}𝑒′ by □ = {𝑥:𝐴}(B𝑒 ≡ 𝑒′ by □ ).
If no extensionality rule applies, the terms 𝑢 and 𝑣 are normalized
and compared by the normalization phase.

The normalization phase compares normalized expressions S(®𝑒) and S(®𝑒′)
by comparing their arguments, where the principal arguments are
compared by the normalization phase because they have already been
normalized, while the non-principal ones are subjected to general
equality comparison.

If the normalization phase compares
(normalized) expressions with different
head-symbols or a metavariable and a
symbol, it of course reports the equa-
tion does not hold.

The clauses in Figure 15.2 are readily turned into an equality-checking
algorithm, because they are directed by the syntax of their goals. Ap-
plication of extensionality rules is a possible source of non-determinism,
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as a type may match several extensionality rules, and also a source of
non-termination, as there is no guarantee that eventually no exten-
sionality rules will be applicable. We discuss strategies for dealing
with these issues in Section 15.4.2.

15.3. Soundness

In this section we prove that the normalization and equality checking
algorithms are sound. Because normalization and equality checking
are intertwined, we prove Theorem 15.3.1 and Theorem 15.3.2 by mu-
tual structural induction.

Theorem 15.3.1 (Soundness of normalization) In a standard type
theory, given a family C of computation rules, and a specification
of principal arguments ℘, the following hold, where B and b are
object boundaries:

1. IfΘ;Γ `B𝑒 andΘ;Γ `B𝑒 ⊲ 𝑒′ thenΘ;Γ `B𝑒 ≡ 𝑒′ andΘ;Γ `B𝑒′ .
2. If Θ;Γ ` b 𝑒 and Θ;Γ ` b 𝑒 ⊲p 𝑒′ then Θ;Γ ` b 𝑒 ≡ 𝑒′ and Θ;Γ ` b 𝑒′ .
3. If Θ;Γ ` b 𝑒 and Θ;Γ ` b 𝑒 ⊲c 𝑒′ then Θ;Γ ` b 𝑒 ≡ 𝑒′ and Θ;Γ ` b 𝑒′ .

Proof. We establish soundness of the rules from Figure 15.1 by mutual
structural induction on the derivations. Derivability of Θ;Γ ` B𝑒′ in
(1) and of Θ;Γ ` b 𝑒′ in (2) and (3) follows already from Theorem 5.1.6,
but we include these nonetheless as they will be needed in Theo-
rem 15.3.2.

Part (1): The case of free variables follows by reflexivity and the vari-
able rule.

If the derivation ends with

a ∉ |Γ| Θ;Γ, a:𝐴 ` (B[a/𝑥]) 𝑒[a/𝑥] ⊲ 𝑒′
Θ;Γ ` {𝑥:𝐴} B{𝑥}𝑒 ⊲ {𝑥}𝑒′[𝑥/a]

then by induction hypothesis

Θ;Γ, a:𝐴 ` (B[a/𝑥]) 𝑒′ ,
Θ;Γ, a:𝐴 ` (B[a/𝑥]) 𝑒[a/𝑥] ≡ 𝑒′ .

We may apply TT-ABSTR to these, because Θ;Γ ` 𝐴 type holds by in-
version on the assumption Θ;Γ ` {𝑥:𝐴} B{𝑥}𝑒 .
If the derivation ends with

Θ;Γ ` bS(®𝑒) ⊲p S(®𝑒′)
Ξ ` 𝑝 ⊲ S(®𝑒′) 6⇝ for (Ξ =⇒ b′ 𝑝 ≡ 𝑣 ) ∈ C

Θ;Γ ` bS(®𝑒) ⊲ S(®𝑒′)

then the claim follows by the induction hypothesis (2) for the first
premise.
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The remaining case is

Θ;Γ ` bS(®𝑒) ⊲p S(®𝑒′) Θ;Γ ` bS( ®𝑒′) ⊲c 𝑒′′ Θ;Γ ` b 𝑒′′ ⊲ 𝑒′′′

Θ;Γ ` bS(®𝑒) ⊲ 𝑒′′′

The induction hypothesis for the last premise secures Θ;Γ ` b 𝑒′′′ ,
while the induction hypotheses for all three premises yield

Θ;Γ ` bS(®𝑒) ≡ S(®𝑒′) , Θ;Γ ` bS( ®𝑒′) ≡ 𝑒′′ , Θ;Γ ` b 𝑒′′ ≡ 𝑒′′′ .

Wemay string these together using transitivity to deriveΘ;Γ ` bS(®𝑒) ≡ 𝑒′′′ .

Part (2): Suppose the rule for S is

M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ b′S(M̂1 , . . . , M̂𝑛) ,
and consider normalization of principal arguments

Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖 ⊲ 𝑒′𝑖 if 𝑖 ∈ ℘(S)
𝑒𝑖 = 𝑒′𝑖 if 𝑖 ∉ ℘(S)

Θ;Γ ` bS(®𝑒) ⊲p S(®𝑒′)

where 𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉. For 𝑖 = 1, . . . , 𝑛, we have

Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖 ≡ 𝑒′𝑖 and Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖 .

Indeed, for 𝑖 ∈ ℘(S) the above are just the induction hypotheses
of a premise, while for 𝑖 ∉ ℘(S) they respectively hold by reflexivity
and an application of Corollary 5.3.2 to Θ;Γ ` bS(®𝑒) . Therefore, the
instantiation 𝐽 = 〈M1 ↦→𝑒′1 , . . . ,M𝑛 ↦→𝑒′𝑛〉 is judgementally equal to 𝐼,
and because 𝐼 is derivable, 𝐽 is derivable by Proposition 5.3.6. From
these facts we conclude

Θ;Γ ` (𝐼∗b′)S(®𝑒) ≡ S(®𝑒′) by the congruence rule for 𝑆,
Θ;Γ ` (𝐽∗b′)S(®𝑒′) by the rule for 𝑆.

If b′ = (□ type), we are done. If b′ = (□ : 𝐴) and b = (□ : 𝐵) then
we derive Θ;Γ ` 𝐼∗𝐴 ≡ 𝐽∗𝐴 by Theorem 5.1.5 and Θ;Γ ` 𝐼∗𝐴 ≡ 𝐵
by Theorem 5.2.3 on Θ;Γ ` bS(®𝑒) and convert the judgements along
them.

Part (3): Consider an application of a type computation rule

(Ξ =⇒ 𝑃 ≡ 𝐵) ∈ C Ξ ` 𝑃 ⊲ 𝐴⇝ 𝐼
Θ;Γ ` 𝐼∗(B𝑒 ∼ 𝑒′ ) for (M:B𝑒 ≡ 𝑒′ by □ ) ∈ Ξ

Θ;Γ ` 𝐴 ⊲c 𝐼∗𝐵

Theorem 15.3.2 ensuresΘ;Γ ` 𝐼∗(B𝑒 ≡ 𝑒′ ) for every (M:B𝑒 ≡ 𝑒′ by □ ) ∈
Ξ. Therefore, sinceΞ =⇒ 𝑃 type is object-invertible andΘ;Γ ` 𝐼∗𝑃 type
has been assumed (note that 𝐼∗𝑃 = 𝐴), it follows by Proposition 13.2.3
that 𝐼 is derivable. We now instantiate the computation rule Ξ =⇒
𝑃 ≡ 𝐵 by 𝐼 to get Θ;Γ ` 𝐴 ≡ 𝐼∗𝐵 and appeal to Theorem 5.1.6 for
Θ;Γ ` 𝐼∗𝐵 type.
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It remains to establish the soundness of a derivation ending with a
term computation rule

(Ξ =⇒ 𝑝 ≡ 𝑣 : 𝐵) ∈ C Ξ ` 𝑝 ⊲ 𝑠 ⇝ 𝐼
Θ;Γ ` 𝐼∗(B𝑒 ∼ 𝑒′ ) for (M:B𝑒 ≡ 𝑒′ by □ ) ∈ Ξ

Θ;Γ ` 𝑠 ⊲c 𝐼∗𝑣 : 𝐴

Theorem 15.3.2 ensuresΘ;Γ ` 𝐼∗(B𝑒 ≡ 𝑒′ ) for every (M:B𝑒 ≡ 𝑒′ by □ ) ∈
Ξ. Observe that since by Definition 14.1.2 𝑝 is a term symbol appli-
cation, mv(𝜏Ξ;[](𝑝)) ⊆ mv(𝑝) and 𝐼∗𝑝 = 𝑠 imply 𝐼∗(𝜏Ξ;[](𝑝)) = 𝜏Θ;Γ(𝑠)
by Proposition 5.3.1.

Reminder: Term patterns.

Unlike type patterns that can take
the form of a (generically applied)
metavariable, term patterns are nec-
essarily term symbol applications.

Because Θ;Γ ` 𝑠 : 𝐴 is derivable, so is Θ;Γ ` 𝑠 :
𝜏Θ;Γ(𝑠) by Corollary 5.3.3, which equals Θ;Γ ` 𝐼∗𝑝 : 𝐼∗(𝜏Θ;Γ(𝑝)). We may
apply Proposition 13.2.3 to the object-invertible rule Ξ =⇒ 𝑝 : 𝜏Θ;Γ(𝑝)
to establish that 𝐼 is derivable. By instantiating the computation rule
Ξ =⇒ 𝑝 ≡ 𝑣 : 𝐵 with 𝐼 we obtain

Θ;Γ ` 𝑠 ≡ 𝐼∗𝑣 : 𝐼∗𝐵

and convert it along Θ;Γ ` 𝐼∗𝐵 ≡ 𝐴 to the desired form, because
Theorem 5.1.6 implies Θ;Γ ` 𝑠 : 𝐼∗𝐵 and Theorem 5.2.3 that Θ;Γ `
𝐼∗𝐵 ≡ 𝐴. The last claim follows once again from Theorem 5.1.6.

Theorem 15.3.2 (Soundness of equality checking) In a standard type
theory, given families C and E of computation and extensionality
rules, and a specification of principal arguments ℘, the following
hold, where B is an object boundary:

1. Θ;Γ ` B𝑒 ≡ 𝑒′ holds if

Θ;Γ ` B𝑒 , Θ;Γ ` B𝑒′ , and Θ;Γ ` B𝑒 ∼ 𝑒′ .

2. Θ;Γ ` 𝑢 ≡ 𝑣 : 𝐴 holds if

Θ;Γ ` 𝑢 : 𝐴, Θ;Γ ` 𝑣 : 𝐴, and Θ;Γ ` 𝑢 ∼e 𝑣 : 𝐴.

3. Θ;Γ ` 𝐴 ≡ 𝐵 holds if

Θ;Γ ` 𝐴 type, Θ;Γ ` 𝐵 type, and Θ;Γ ` 𝐴 ∼n 𝐵.

4. Θ;Γ ` 𝑢 ≡ 𝑣 : 𝐴 holds if

Θ;Γ ` 𝑢 : 𝐴, Θ;Γ ` 𝑣 : 𝐴, and Θ;Γ ` 𝑢 ∼n 𝑣 : 𝐴.

Proof. We proceed by mutual structural induction on the derivation.

Part (1): Consider a derivation ending with an abstraction

a ∉ |Γ| Θ;Γ, a:𝐴 ` (B[a/𝑥]) 𝑒[a/𝑥] ∼ 𝑒′[a/𝑥]
Θ;Γ ` {𝑥:𝐴} B{𝑥}𝑒 ∼ {𝑥}𝑒′

By inverting the assumptions we get

Θ;Γ, a:𝐴 ` B[a/𝑥] 𝑒[a/𝑥] and Θ;Γ, a:𝐴 ` B[a/𝑥] 𝑒′[a/𝑥] ,
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as well as Θ;Γ ` {𝑥:𝐴} B{𝑥}𝑒 . Now the induction hypothesis for the
premise yields

Θ;Γ, a:𝐴 ` (B[a/𝑥]) 𝑒[a/𝑥] ≡ 𝑒′[a/𝑥] ,
which we may abstract with TT-ABSTR.

If the derivation ends with

Θ;Γ ` (𝐴 ⊲ 𝐴′) type Θ;Γ ` (𝐵 ⊲ 𝐵′) type Θ;Γ ` (𝐴′ ∼n 𝐵′) type
Θ;Γ ` (𝐴 ∼ 𝐵) type

then Theorem 15.3.1 applied to the first two premises gives

Θ;Γ ` 𝐴 ≡ 𝐴′, Θ;Γ ` 𝐴′ type,
Θ;Γ ` 𝐵 ≡ 𝐵′, Θ;Γ ` 𝐵′ type,

and then the induction hypothesis for the last premise Θ;Γ ` 𝐴′ ≡ 𝐵′.
From these we may derive Θ;Γ ` 𝐴 ≡ 𝐵 easily.

Suppose the derivation ends with

Θ;Γ ` (𝐴 ⊲ 𝐴′) type Θ;Γ ` 𝑢 ∼e 𝑣 : 𝐴′

Θ;Γ ` 𝑢 ∼ 𝑣 : 𝐴

By Theorem 5.1.6 applied to the assumption we see that Θ;Γ ` 𝐴 type,
hence we may apply Theorem 15.3.1 to the first premise and get

Θ;Γ ` 𝐴 ≡ 𝐴′ and Θ;Γ ` 𝐴′ type

We convert the assumptions along the above equation to

Θ;Γ ` 𝑢 : 𝐴′ and Θ;Γ ` 𝑣 : 𝐴′

so that we may apply the induction hypothesis to the second premise
and obtain Θ;Γ ` 𝑢 ≡ 𝑣 : 𝐴′. One more conversion is then needed to
derive Θ;Γ ` 𝑢 ≡ 𝑣 : 𝐴.

Part (2): If the derivation ends with

Ξ ` 𝐴 ⊲ 𝑃 6⇝ for (Ξ, s:(□ : 𝑃), t:(□ : 𝑃),Φ =⇒ s ≡ t : 𝑃) ∈ E

Θ;Γ ` 𝑢 ⊲ 𝑢′ : 𝐴 Θ;Γ ` 𝑣 ⊲ 𝑣′ : 𝐴 Θ;Γ ` 𝑢′ ∼n 𝑣′ : 𝐴
Θ;Γ ` 𝑢 ∼e 𝑣 : 𝐴

then Theorem 15.3.1 applied to the first two premises establishes

Θ;Γ ` 𝑢 ≡ 𝑢′ : 𝐴 Θ;Γ ` 𝑢′ : 𝐴
Θ;Γ ` 𝑣 ≡ 𝑣′ : 𝐴 Θ;Γ ` 𝑣′ : 𝐴

Then the induction hypothesis tells us that Θ;Γ ` 𝑢′ ≡ 𝑣′ : 𝐴. It is
now easy to combine the derived equalities into Θ;Γ ` 𝑢 ≡ 𝑣 : 𝐴.
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If the derivation ends with an application of an extensionality rule

(Ξ, s:(□ : 𝑃), t:(□ : 𝑃),Φ =⇒ s ≡ t : 𝑃) ∈ E Ξ ` 𝐴 ⊲ 𝑃 ⇝ 𝐼
Θ;Γ ` 𝐼∗(B𝑒 ∼ 𝑒′ ) for (M:B𝑒 ≡ 𝑒′ by □ ) ∈ Ξ

Θ;Γ ` 〈𝐼 , s↦→𝑢, t ↦→𝑣〉∗(B𝑒 ∼ 𝑒′ ) for (M:B𝑒 ≡ 𝑒′ by □ ) ∈ Φ

Θ;Γ ` 𝑢 ∼e 𝑣 : 𝐴

then Θ;Γ ` 𝐴 type follows from Θ;Γ ` 𝑢 : 𝐴 by Theorem 5.1.6. Induc-
tion hypotheses for the premises give

Θ;Γ ` 𝐼∗(B𝑒 ≡ 𝑒′ ) for (M:B𝑒 ≡ 𝑒′ by □ ) ∈ Ξ (15.1)
Θ;Γ ` 〈𝐼 , s↦→𝑢, t ↦→𝑣〉∗(B𝑒 ≡ 𝑒′ ) for (M:B𝑒 ≡ 𝑒′ by □ ) ∈ Φ (15.2)

Because Ξ =⇒ 𝑃 type is object-invertible, and 𝐼∗𝑃 = 𝐴 and Θ;Γ `
𝐴 type is derivable, by Proposition 13.2.3 the instantiation 𝐼 is deriv-
able too. We extend 𝐼 to the instantiation

𝐽 = 〈𝐼 , s↦→𝑢, t ↦→𝑣,Φ↦→★〉
of the premises of the extensionality rule over Θ;Γ, where Φ↦→★ sig-
nifies that the metavariables of Φ are instantiated with (suitably ab-
stracted) dummy values. We claim that 𝐽 is derivable: we already know
that 𝐼 is derivable; derivability at s and t reduces to the assumptions
Θ;Γ ` 𝑢 : 𝐴 and Θ;Γ ` 𝑢 : 𝐴; and derivability at Φ holds by the
induction hypotheses (15.2). When we instantiate the extensionality
rule with 𝐽 , we obtain the desired equation.

Parts (3) and (4): The variable case Θ;Γ ` a ∼n a : 𝐴 is trivial.

Suppose the rule for symbol S is

M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ b′S(M̂1 , . . . , M̂𝑛)
and the derivation ends with

Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖 ∼n 𝑒′𝑖 if 𝑖 ∈ ℘(S)
Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖 ∼ 𝑒′𝑖 if 𝑖 ∉ ℘(S)

Θ;Γ ` bS(®𝑒) ∼n S( ®𝑒′)
where 𝐼 = 〈M1 ↦→𝑒1 , . . . ,M𝑛 ↦→𝑒𝑛〉, and define 𝐽 = 〈M1 ↦→𝑒′1 , . . . ,M𝑛 ↦→𝑒′𝑛〉.
We first derive

Θ;Γ ` (𝐼∗b′)S(®𝑒) ≡ S( ®𝑒′) (15.3)

by the congruence rule associated with S, whose premises are derived
as follows:

1. For each 𝑖 = 1, . . . , 𝑛 the premise Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖 is derivable
by Corollary 5.3.2 applied to Θ;Γ ` bS(®𝑒) . This also shows that 𝐼
is derivable.

2. For each 𝑖 = 1, . . . , 𝑛 such that B𝑖 is an object boundary, the
premise Θ;Γ ` (𝐼(𝑖)∗B𝑖) 𝑒𝑖 ≡ 𝑒′𝑖 is one of the induction hypothe-
ses. This also shows that 𝐼 and 𝐽 are judgementally equal, there-
fore 𝐽 is derivable by Proposition 5.3.6.
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3. For each 𝑖 = 1, . . . , 𝑛 the premise Θ;Γ ` (𝐽(𝑖)∗B𝑖) 𝑒′𝑖 is derivable
because 𝐽 is derivable.

If b = □ type, we are done. If b′ = (□ : 𝐴) and b = (□ : 𝐵), we con-
vert (15.3) along Θ;Γ ` 𝐼∗𝐴 ≡ 𝐵. The equation holds by Theorem 5.2.3
applied to Θ;Γ ` S(®𝑒) : 𝐵 and Θ;Γ ` S(®𝑒) : 𝐼∗𝐴, where the latter is
derived by Theorem 5.1.6 and the former by the rule for S.

15.4. Discussion

The relations defined by the inductive clauses from Figure 15.1 and
Figure 15.2 serve as the basis of an equality checking algorithm. In
order to obtain a working and useful implementation, we need to
address several issues.

15.4.1. Classification of rules and principal arguments

An experienced designer of type theories is quite able to recognize
computation and extensionality rules, and stitch them together by
picking correct principal arguments. There is no need for such man-
ual work, because Proposition 14.1.3 and Proposition 14.2.2 provide
easily verifiable syntactic criteria for recognizing computation and ex-
tensionality rules. The principal arguments must be chosen correctly,
lest the equality checking procedure fail unnecessarily or enter an
infinite loop, as shown by the following example.

Example 15.4.1 Consider the computation and extensionality rules
for simple products shown in Figure 15.3, where we ignore the lin-
earity requirements, as they just obscure the point we wish tomake.
Without any principal arguments, the algorithm fails to apply the
first computation rule to fst(𝐴, 𝐵, 𝑢) in case 𝑢 normalizes to a pair.
More ominous is the infinite loop that is entered on checking

[]; 𝑥:𝐴 × 𝐵, 𝑦:𝐴 × 𝐵 ` 𝑥 ≡ 𝑦 : 𝐴 × 𝐵,
where we assume that 𝐴 and 𝐵 are already normalized. The al-
gorithm performs the following steps (where all judgements are
placed in the context []; 𝑥:𝐴 × 𝐵, 𝑦:𝐴 × 𝐵). First, the extensionality
phase reduces the equation to

fst(𝐴, 𝐵, 𝑥) ≡ fst(𝐴, 𝐵, 𝑦) : 𝐴, snd(𝐴, 𝐵, 𝑥) ≡ snd(𝐴, 𝐵, 𝑦) : 𝐵.
after which the normalization verifies the first equation by compar-
ing

𝐴 ≡ 𝐴, 𝐵 ≡ 𝐵, 𝑥 ≡ 𝑦 : 𝐴 × 𝐵.
We may short-circuit the first two equalities, but checking the third
one leads back to the original one, unless the third argument of fst
is principal, in which case the algorithm persists in the normaliza-
tion phase and fails immediately, as it should.
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` A type ` B type ` s : A ` t : B
` fst(A, B, pair(A, B, s, t)) ≡ s : A

` A type ` B type ` s : A ` t : B
` snd(A, B, pair(A, B, s, t)) ≡ t : B

` A type ` B type ` s : A × B ` t : A × B
` fst(A, B, s) ≡ fst(A, B, t) : A ` snd(A, B, s) ≡ snd(A, B, t) : B

` s ≡ t : A × B Figure 15.3.: Computation and exten-
sionality rules for simple products.

The previous example suggests that we can read off the principal ar-
guments either from extensionality rules, by looking for occurrences
of the left and right-hand sides in the subsidiary equalities, or from
computation rules, by inspecting the syntactic form of the left-hand
side of the rule. We have analyzed a number of standard computa-
tion and extensionality rules and identified the following strategy for
automatic determination of principal arguments, which we also im-
plemented:

The 𝑖-th argument of S is principal if there is a compu-
tation rule Ξ =⇒ b𝑝 ≡ 𝑣 such that S(𝑒1 , . . . , 𝑒𝑛) appears
as a sub-pattern of 𝑝 and 𝑒𝑖 is neither of the form M() nor
{ ®𝑥}M(®𝑥).

In many cases, among others the simply-typed 𝜆-calculus, inductive
types, and intensional Martin-Löf type theory, the strategy leads to
weak head-normal forms. We postpone the pursuit of deeper under-
standing of this phenomenon to another time.

It would be interesting to combine principal arguments with another
common technique for controlling applications of extensionality rules,
namely neutral forms. Roughly, the principal arguments would still
tell which arguments are normalized, but not whether they are com-
pared structurally. Instead, we always compare them recursively, but
skip the type-directed phase in 𝑠 ≡ 𝑡 : 𝐴 when the syntactic forms of 𝑠
and 𝑡 are neutral, i.e., they indicate that application of extensionality
rules cannot lead to further progress. For instance, when checking
𝑥 ≡ 𝑦 : 𝐴 × 𝐵 in Example 15.4.1, there is no benefit to applying pro-
jections to the variables 𝑥 and 𝑦. Each specific type theory has its
own neutral forms, if any, so the user would have to describe these.
In some cases it might even be possible to detect the neutral forms
automatically.

15.4.2. Determinism, termination and completeness

The inductive clauses in Figure 15.1 and Figure 15.2 could be imple-
mented either as proof search, or as a streamlined algorithm based
on normalization. Proof assistants typically implement the latter strat-
egy, because they work with type theories whose normalization is con-
fluent and terminating, and equality checking requires no backtrack-
ing. We use the same strategy, so we ought to address non-determinism
and non-termination.
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A computation or extensionality rule cannot be the source of non-
determinism on its own, because Definition 14.1.1, Definition 14.1.2 and
Definition 14.2.1 prescribe determinism. However, in either phase of
the algorithm several rules may be applicable at the same time, which
leads to non-determinism, and we saw in Example 15.4.1 that a poor
choice of principal arguments causes non-termination. This is all quite
familiar, and so are techniques for ensuring that all is well, includ-
ing confluence checking and termination arguments based on well-
founded relations. While these are doubtlessly important issues, we
are not addressing them because they are independent of the algo-
rithm itself. Instead, we aim to provide equality checking that favors
generality and extensibility, while still providing soundness through
Theorem 15.3.2 and Theorem 15.3.1. In this regard we are in good com-
pany, as recent version of Agda allow potentially unsafe user-defined
computation rules, a point further discussed in Chapter 17.

A related question is completeness of equality checking, i.e., does the
algorithm succeed in checking every derivable equation? Once again,
our position is the same: completeness is important, both theoreti-
cally and from a practical point of view, but is not the topic of the
present thesis. Numerous techniques for establishing completeness
of equality checking are known, and these can be applied to any spe-
cific instantiation of our algorithm. An interesting direction to pursue
would be adaptation of such techniques to our general setting.



An implementation in
Andromeda 2 16.

Having laid out the algorithm, we report on our experience with its im-
plementation in the Andromeda 2 proof assistant [9, 20, 23] [20]: Bauer et al. (2018), “Design and

Implementation of the Andromeda
Proof Assistant”
[9]: Bauer et al. The Andromeda proof
assistant
[23]: Bauer et al. (2020), “Equality
Checking for General Type Theories in
Andromeda 2”

, in which
the user may define any work in any standard type theory. It is an LCF
style proof assistant, i.e., a meta-level programming language with ab-
stract datatypes of judgements, boundaries, and derived rules whose
construction and application is controlled by a trusted nucleus (con-
sisting of around 4200 lines of OCaml code).

The nucleus implements context-free type theory, a variant of type
theory in which there are no metacontexts and variable contexts. In-
stead, each free variable is tagged with its type and eachmetavariable
with its boundary, as explained in [69] [69]: Haselwarter et al. (2021), Finitary

type theories with and without contexts
. Since there are no contexts, a

mechanism is needed for tracking proof-irrelevant uses of metavari-
ables and variables, which may occur in derivations of equalities. For
this purpose, equality judgements take the form

𝐴 ≡ 𝐵 by 𝛼 and 𝑠 ≡ 𝑡 : 𝐴 by 𝛼

where 𝛼 is an assumption set whose elements are those metavari-
ables and variables that are used to derive the equality but do not ap-
pear in its boundary. The assumptions sets are also recorded in term
conversions. As far as the equality checking algorithm is concerned,
this is an annoying but inessential complication, because all conver-
sions must be performed explicitly and carefully accounted for.

The implementation of the equality checking algorithm comprises
around 1400 lines of OCaml code which reside outside of the trusted
nucleus, so that each reasoning step must be passed to the nucleus
for validation. The overhead of such a policy is significant, but worth
paying in exchange for keeping the nucleus small and uncorrupted,
at least in the initial, experimental phase.

Our rudimentary implementation is quite inefficient and cannot com-
pete with the equality checkers found in mature proof assistants.
The interesting question is not whether we could try harder to sig-
nificantly speed up the algorithm, which presumably we could, but
whether the design of the algorithm makes it inherently inefficient.
We argue that this is not the case. First, we may trade safety for effi-
ciency by placing equality checking into the trusted nucleus, as many
proof assistants do, so that we need not check every single step of
the algorithm. Second, even though term equality is typed, the nor-
malization procedure is essentially untyped. Indeed, when the rules
in Figure 15.1 are used to normalize Θ;Γ ` 𝑡 : 𝐴 they never modify 𝐴,
and only ever inspect 𝑡, which allows us to ignore 𝐴 while rewriting 𝑡.
The soundness of the algorithm guarantees that the normalized term
will still have type 𝐴.



16. An implementation in Andromeda 2 141

16.1. Examples

The example in Figure 16.1 shows how dependent products are formal-
ized in Andromeda 2. The rules are direct transcriptions of the usual
ones. We linearize the 𝛽-rule as shown in Example 13.1.4 to make it a
computation rule. We do so by explicitly converting λ ₂A ₂B s along
the equality Π ₂A ₂B ≡ Π ₁A ₁B, which holds by a congruence rule and
the premises ξ and ζ.

require eq ;;

rule Π (A type) ({x : A} B type) type ;;
rule λ (A type) ({x : A} B type) ({x : A} e : B{x}) : Π A B ;;
rule app (A type) ({x : A} B type) (s : Π A B) (a : A) : B{a} ;;

rule Πβ
(A type) ({x:A} B type)
({x : A} s : B{x}) (t : A) :
app A B λ( A B s) t ≡ s{t} : B{t} ;;

rule sym_ty (A type) (B type) (A ≡ B) : B ≡ A ;;

rule Πβ_linear
(₁A type) ({x:₁A} ₁B type)
(₂A type) ({x:₂A} ₂B type)
({x:₂A} s : ₂B{x}) (t : ₁A)
(₂A ≡ ₁A by ξ) ({x : ₂A} ₂B{x} ≡ ₁B{convert x ξ} by ζ)
: app ₁A ₁B (convert λ( ₂A ₂B s)

(congruence Π( ₂A ₂B) Π( ₁A ₁B) ξ ζ)) t
≡ convert s{convert t (sym_ty ₂A ₁A ξ)}

ζ{convert t (sym_ty ₂A ₁A ξ)} : ₁B{t} ;;

eq.add_rule Πβ_linear ;;

rule Π_ext (A type) ({x : A} B type)
(f : Π A B) (g : Π A B)
({x : A} app A B f x ≡ app A B g x : B{x})
: f ≡ g : Π A B;;

eq.add_rule Π_ext;; Figure 16.1.: Dependent products in An-
dromeda 2.

The calls to eq.add_rule pass equality rules to the equality checking al-
gorithm, which employs Proposition 14.1.3 and Proposition 14.2.2 to au-
tomatically classify the inputs as computation or extensionality rules.
It also determines which arguments are principal by using the tech-
nique from Section 15.4.1. In the example shown, the linearized rule
Πβ_linear is classified by the algorithm as computation rule, Π_ext
as extensionality rule, and the the third argument of app is declared
principal. To declare principal arguments An-

dromeda 2 uses the automatic tech-
inque described in Section 15.4.Many a newcomer to Martin-Löf type theory is disappointed to learn

that only one of equalities 0 + 𝑛 = 𝑛 and 𝑛 + 0 = 𝑛 holds judgemen-
tally. In fact, there is strong temptation to pass to extensional type
theory just so that a more symmetric notion of equality is recovered,
but then one has to give up decidable equality checking. The exam-
ple in Figure 16.3 and Figure 16.2 shows how our algorithm combines
the best of both worlds and demonstrates further capabilities of the
implementation.

First, Figure 16.2 shows a formalization of extensional equality types,
whose distinguishing feature is the equality reflection principle called
equality_reflection in the code, which states that the equality type Eq
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reflects into judgemental equality. Instead of postulating the familiar
eliminator J, it is more convenient to use an equivalent formulation
that uses the judgemental uniqueness of equality proofs uip, see
Example 14.2.4. Note that uip is installed as an extensionality rule into
the equality checker. It is well known that equality reflection makes
equality checking undecidable, so the equality checker will not be
able to prove all equalities. Nevertheless, we expect it to be still quite
useful and well behaved.

require eq ;;

rule Eq (A type) (a : A) (b : A) type ;;
rule refl (A type) (a : A) : Eq A a a ;;

rule equality_reflection
(A type) (a : A) (b : A) (_ : Eq A a b)
: a ≡ b : A ;;

rule uip (A type) (a : A) (b : A)
(p : Eq A a b) (q : Eq A a b)
: p ≡ q : Eq A a b ;;

eq.add_rule uip ;; Figure 16.2.: Extensional equality type in
Andromeda 2.

We continue our example in Figure 16.3 by postulating the natural
numbers N. Everything up to the definition of addition is standard,
where we also install the computation rules for the induction princi-
ple N_ind into the equality checker. We then define addition by pos-
tulating a term symbol + with the defining equality plus_def which
expresses addition by primitive recursion. We could use plus_def as
a global computation rule, but we choose to use it only locally, with
the help of the function eq.add_locally.

In the remainder of the code we prove judgemental equalities

𝑛 + 0 ≡ 𝑛, 𝑚 + succ(𝑛) ≡ succ(𝑚 + 𝑛), and 0 + 𝑛 = 𝑛.

The first one is derived as plus_zero_right using plus_def as a local
computation rule together with eq.prove which takes an equational
boundary (where □ is written as ??) and runs the equality checking
algorithm to generate a witness for it. The second equality is derived
as plus_succ in much the same way. The derivation of the third equal-
ity relies on equality reflection to convert a term of the equality type
Eq N (zero + n) n to the corresponding judgemental equality zero +

n ≡ n : N. We install all three equalities as computation rules.

In addition to proving equalities, we can also normalize terms with eq
.normalize, and compute strong normal forms (all arguments are prin-
cipal) with eq.compute. In both cases we obtain not only the result, but
also a certifying equality. For example, when given succ zero + succ
zero, the normalizer outputs the weak head-normal form succ ((succ
zero) + zero), together with a certificate for the judgemental equality
(succ zero) + (succ zero) ≡ succ ((succ zero) + zero) : N. Because we in-
stalled both neutrality laws for 0 as computation rules, strong normal-
ization reduces (zero + x) + succ (succ zero + zero) to succ (succ x)
: N, where x is a free variable of type N.
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rule N type ;;
rule zero : N ;;
rule succ (n : N) : N ;;

rule N_ind
({_ : N} C type) (x : C{zero})
({n : N} {u : C{n}} f : C{succ n}) (n : N)
: C{n} ;;

rule βN_zero
({_ : N} C type) (x : C{zero})
({n : N} {u : C{n}} f : C{succ n})
: N_ind C x f zero ≡ x : C{zero} ;;

eq.add_rule βN_zero ;;

rule βN_succ
({_ : N} C type) (x : C{zero})
({n : N} {u : C{n}} f : C{succ n}) (n : N)
: N_ind C x f (succ n) ≡ f{n, N_ind C x f n} : C{succ n} ;;

eq.add_rule βN_succ ;;

rule (+) (_ : N) (_ : N) : N ;;
rule plus_def (m : N) (n : N) :
(m + n) ≡ N_ind ({_} N) m ({_ : N} {u : N} succ u) n : N ;;

let plus_zero_right = derive (n : N) →
eq.add_locally plus_def

(fun () → eq.prove ((n + zero) ≡ n : N by ??)) ;;

eq.add_rule plus_zero_right ;;

let plus_succ = derive (m : N) (n : N) →
eq.add_locally plus_def

(fun () →
eq.prove ((m + succ n) ≡ (succ (m + n)) : N by ??)) ;;

eq.add_rule plus_succ ;;

let plus_zero_left = derive (k : N) →
let ap_succ = derive (m : N) (n : N) (p : Eq N m n) →

eq.add_locally (derive → equality_reflection N m n p)
(fun () → refl N (succ m) : Eq N (succ m) (succ n)) in

eq.add_locally plus_def
(fun () →

equality_reflection N (zero + k) k
(N_ind ({n} Eq N (zero + n) n) (refl N zero)

({n} {ih} ap_succ (zero + n) n ih) k)) ;;

eq.add_rule plus_zero_left ;; Figure 16.3.: Addition for natural num-
bers in Andromeda 2.
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Designing a user-extensible equality checking algorithm for type the-
ory is a balancing act between flexibility, safety, and automation. We
compare ours to that of several proof assistants that support user-
extensible equality checking.

The overall design of our algorithm is similar to the equality checking
and simplification phases used in the type-reconstruction algorithm
of MMT [104, 125] [104]: The MMT Language and System

[125]: Rabe (2018), “A Modular Type
Reconstruction Algorithm”

, a meta-meta-language for description of formal
theories. In MMT inference rules are implemented as trusted low-level
executable code, which gives the system an extremely wide scope but
also requires care and expertise by the user. In Andromeda 2 the user
writes down the desired inference rules directly. The nucleus checks
them for compliance with Definition 4.4.5 of a standard type theory
before accepting them, which prevents the user from breaking the
meta-theoretic properties that the nucleus relies on.

Dedukti [50] [50]: The Dedukti logical frameworkis a type-checker founded on the logical framework 𝜆Π,
extended with user-defined conversion rules. Because equality in De-
dukti is based on convertibility of terms, there is no support for user-
defined extensionality or 𝜂-rules. The Dedukti rewriting system sup-
ports higher-order patterns and includes a confluence checker. We
see no obstacle to adding some form of confluence checking to An-
dromeda 2 in the future, while support for higher-order patterns would
first have to overcome lack of strengthening, see the discussion fol-
lowing Definition 13.1.2.

Recent versions of the proof assistant Agda support user-definable
computation rules [38, 39, 41] [39]: Cockx et al. (2016), “Sprinkles of

extensionality for your vanilla type
theory”
[38]: Cockx (2020), “Type Theory
Unchained: Extending Agda with User-
Defined Rewrite Rules”
[41]: Cockx et al. (2021), “The Taming of
the Rew: A Type Theory with Computa-
tional Assumptions”

. Like Dedukti, Agda allows higher-order
patterns and provides a confluence checker. It accepts non-linear pat-
terns, which it linearizes and generates suitable equational premises.
In addition, it applies built-in 𝜂-rules for functions and record types
during a type-directed matching phase. It seems to us that the phase
could equally well use extensionality rules, which might more easily
enable user-defined extensionality principles. Agda designers point
out in [38] [38]: Cockx (2020), “Type Theory

Unchained: Extending Agda with User-
Defined Rewrite Rules”

that having local rewrite rules would improve modular-
ity. For example, one could parameterize code by an abstract type,
together with rewrite rules it satisfies. This sort of functionality is al-
ready present in Andromeda 2, which treats all judgement forms as
first-class values, so we may simply pass judgemental equalities as
parameters and use them as local computation and extensionality
rules.

In order to make our equality checking algorithm realistically useful,
we ought to combine it with other techniques, such as existential vari-
ables, unification, and implicit arguments. Whether that can be done
in full generality remains to be seen.



Conclusion 18.
The study of meta-theory of type theory is certainly an important step
towards making type theories, and the proof assistants they enable,
more compatible. With the fast development of computer science and
software tools, it is imperative that the proofs stay on solid grounds,
which we can achieve by a deep understanding of the mathematical
content beneath. While in this thesis we took steps in the directions of
transformations and equality checking for type theories, there are cer-
tainly many more areas to investigate and improve on. We are looking
forward to reading the possible next chapters on the meta-analysis of
type theories and other formal systems. Hopefully the story of Carla
will inspire new young (and old) minds to join the effort.



APPENDIX



1: The use of TT-ABSTR is trivial, since q
does not depend on 𝑥. It is in essence
just a weakening.

Propositions as (small) types A.
As an example of a type-theoretic transformation we give the familiar
propositions as (small) types transformation ([48, 49, 74, 149] [149]: Wadler (2015), “Propositions as

Types”
[48]: Curry (1934), “Functionality in
Combinatory Logic”
[49]: Curry et al. (1958), Combinatory
logic. Vol. I
[74]: Howard (1980), “The Formulae-as-
Types Notion of Construction”

) from
first-order logic (FOL) to the Martin-Löf type theory ([97–100]

[100]: Martin-Löf (1998), “An intuitionis-
tic theory of types”
[97]: Martin-Löf (1975), “An intuitionistic
theory of types: predicative part”
[98]: Martin-Löf (1982), “Constructive
mathematics and computer program-
ming”
[99]: Martin-Löf (1984), Intuitionistic
type theory

) with one
universe of (small) types. We give the specific rules of FOL and MLTT
following the syntax of finitary type theories. Since both type theories
are standard, the object rules are symbol rules, so the signature can
be read off the premises.

The rules of first-order logic (FOL) are given according to [75] [75]: Paulson et al. Isabelle/FOL –
First-Order Logic

. Figure A.1
gives the base types, the type of propositions and the type of individ-
uals. Next we give logical connectives in Figure A.2 and the rules for
the quantifiers in Figure A.3.

We only describe the fragment of MLTT that is relevant for the trans-
formation, using the type U for the universe and El for the decoding
as shown in Figure A.4. We also pose a base type base to which we
can map the type of individuals in FOL. Rules for the empty type are
in Figure A.5, for the binary sum (dijsoint union) in Figure A.6, for de-
pendent sums in Figure A.7 and for dependent products in Figure A.8.
Note that for clarity in binary sums we use the usual infix notation
on the symbol + in all but the symbol rule.

The syntactic transformation from FOL to MLTT is given in the table
below. For every symbol we assign the expression that it is mapped
to and the metavariable context over which the expression is syntac-
tically valid. We can read off the metacontext from the symbol rules
of FOL.

It is easy to see that this is a valid type-theoretic transformation, as
the derivations pertaining the specific rules are mostly very easy to
deduce from the shape of the expressions. As an example we take a
look at specific rules of FOL: the symbol rule for conj and existsE.

Case conj: The specific rule

` p : o ` q : o

` conj(p, q) : o
gets mapped to

` p : U ` q : U

` σ(p, {𝑥}q) : U .

This can be derived using the symbol rule for σ with the instantia-
tion

𝐼 = 〈a ↦→p, P↦→{𝑥}q〉
which is clearly derivable since

[p:U, q:U]; [] ` {𝑥:El(p)}q : U

is derived using TT-ABSTR1 and the specific rule for El.
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2: We display the judgement in the tra-
ditional farction form. The premises are
just the metacontext.

Case existsE: The specific symbol rule

` {𝑥:i}P : o ` R : o
` a : true(exists({𝑥}P(𝑥))) ` {𝑥 : i}{𝑦 : true(P(𝑥))}b : true(R)

` existsE({𝑥}P(𝑥),R, a, {𝑥}{𝑦}b(𝑥, 𝑦)) : true(R)
is mapped to2

` {𝑥:El(base)}P : U ` R : U
` a : El(σ(base, {𝑥}P(𝑥))) ` {𝑥:El(base)}{𝑦 : El(P(𝑥))}b : El(R)
` b(π1(El(base), {𝑥}El(P(𝑥)), a), π2(El(base), {𝑥}El(P(𝑥)), a)) : El(R)

(A.1)
Let Ξ be the metacontext from (A.1). Using TT-CONV-TM we convert a
along the equation

El(σ(base, {𝑥}P(𝑥))) ≡ Σ(El(base), {𝑥}El(P))
that arises from EL-SIGMA. We then apply the symbol rule for π1 to
derive

Ξ; [] ` π1(El(base), {𝑥}El(P(𝑥)), a) : El(base)
Similarly we derive

Ξ; [] ` π2(El(base), {𝑥}El(P(𝑥)), a) : El(P(π1(El(base), {𝑥}El(P(𝑥)), a)))
and conclude the derivation of (A.1) using TT-META for b.
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Symbol in FOL Metavariable shape in MLTT Expression in MLTT
o [] U

true [p:(Tm, 0)] El(p)
i [] El(base)

false [] ⊥
falseE [p:(Tm, 0), a:(Tm, 0)] Empty_ind({𝑥}El(p), a)
conj [p:(Tm, 0), q:(Tm, 0)] σ(p, {𝑥}q)
conjI [p:(Tm, 0), q:(Tm, 0), a:(Tm, 0), b:(Tm, 0)] pair(El(p), {𝑥}El(q), a, b)

conjunct1 [p:(Tm, 0), q:(Tm, 0), a:(Tm, 0)] π1(El(p), {𝑥}El(q), a)
conjunct2 [p:(Tm, 0), q:(Tm, 0), a:(Tm, 0)] π2(El(p), {𝑥}El(q), a)

disj [p:(Tm, 0), q:(Tm, 0)] plus(p, q)
disjI1 [p:(Tm, 0), q:(Tm, 0), a:(Tm, 0)] inl(El(p), El(q), a)
disjI2 [p:(Tm, 0), q:(Tm, 0), a:(Tm, 0)] inr(El(p), El(q), a)
disjE [p:(Tm, 0), q:(Tm, 0), r:(Tm, 0),

a:(Tm, 0), b:(Tm, 1), c:(Tm, 1)]
cases(El(p), El(q), {𝑥}El(r),

a, {𝑥}b(𝑥), {𝑥}c(𝑥))
imp [p:(Tm, 0), q:(Tm, 0)] π(p, {𝑥}q)
impI [p:(Tm, 0), q:(Tm, 0), a:(Tm, 1)] λ(El(p), {𝑥}El(q), {𝑥}a)
mp [p:(Tm, 0), q:(Tm, 0), a:(Tm, 0), b:(Tm, 0)] app(El(p), {𝑥}El(q), a, b)
all [P:(Tm, 1)] π(base, {𝑥}P(𝑥))
allI [P:(Tm, 1), a:(Tm, 1)] λ(El(base), {𝑥}El(P(𝑥)), {𝑥}a(𝑥))
spec [P:(Tm, 1), a:(Tm, 0),M:(Tm, 0)] app(El(base), {𝑥}El(P(𝑥)), a,M)
exists [P:(Tm, 1)] σ(base, {𝑥}P(𝑥))
existsI [P:(Tm, 1),M:(Tm, 0), a:(Tm, 0)] pair(El(base), {𝑥}El(P(𝑥)),M, a)
existsE [P:(Tm, 1),R:(Tm, 0), a:(Tm, 0), b:(Tm, 2)] b(π1(El(base), {𝑥}El(P(𝑥)), a),

π2(El(base), {𝑥}El(P(𝑥)), a))

` o type

` p : o
` true(p) type ` i type Figure A.1.: Base types of FOL: A type o of

propositions and a type i of individuals.
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` false : o
` p : o ` a : true(false)
` falseE(p, a) : true(p)

` p : o ` q : o
` conj(p, q) : o

` p : o ` q : o ` a : true(p) ` b : true(q)
` conjI(p, q, a, b) : true(conj(p, q))

` p : o ` q : o ` a : true(conj(p, q))
` conjunct1(p, q, a) : true(p)

` p : o ` q : o ` a : true(conj(p, q))
` conjunct2(p, q, a) : true(q)

` p : o ` q : o
` disj(p, q) : o

` p : o ` q : o ` a : true(p)
` disjI1(p, q, a) : true(disj(p, q))

` p : o ` q : o ` a : true(q)
` disjI2(p, q, a) : true(disj(p, q))

` p : o ` q : o ` r : o
` a : true(disj(p, q)) ` {𝑥:true(p)}b : true(r) ` {𝑥:true(q)}c : true(r)

` disjE(p, q, r, a, {𝑥}b(𝑥), {𝑥}c(𝑥)) : true(r)

` p : o ` q : o
` imp(p, q) : o

` p : o ` q : o ` {𝑥:true(p)}a : true(q)
` impI(p, q, {𝑥}a(𝑥)) : true(imp(p, q))

` p : o ` q : o ` a : true(imp(p, q))) ` b : true(p)
` mp(p, q, a, b) : true(q)

Figure A.2.: Logical connectives of FOL.

` {𝑥:i}P : o
` all({𝑥}P(𝑥)) : o

` {𝑥:i}P : o ` {𝑥:i}a : true(P(𝑥))
` allI({𝑥}P(𝑥), {𝑥}a(𝑥)) : true(all({𝑥}P(𝑥)))

` {𝑥:i}P : o ` a : true(all({𝑥}P𝑥)) ` M : i
` spec({𝑥}P(𝑥), a,M) : true(P(M))

` {𝑥:i}P : o
` exists({𝑥}P(𝑥)) : o

` {𝑥:i}P : o ` M : i ` a : true(P(M))
` existsI({𝑥}P(𝑥),M, a) : true(exists({𝑥}P(𝑥)))

` {𝑥:i}P : o ` R : o
` a : true(exists({𝑥}P(𝑥))) ` {𝑥 : i}{𝑦 : true(P(𝑥))}b : true(R)

` existsE({𝑥}P(𝑥),R, a, {𝑥}{𝑦}b(𝑥, 𝑦)) : true(R)
Figure A.3.: Quantifiers in FOL.

` U type

` t : U
` El(t) type ` base : U

Figure A.4.: Base types of MLTT.
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` ⊥ : U ` Empty type

EL-BOT

` El(⊥) ≡ Empty

` {𝑥:Empty}C type ` a : Empty

` Empty_ind({𝑥}C(𝑥), a) : C(a)
Figure A.5.: The empty type of MLTT

` a : U ` b : U
` plus(a, b) : U

` A type ` B type

` +(A, B) type
EL-PLUS

` a : U ` b : U
` El(plus(a, b)) ≡ El(a)+El(b)

` A type ` B type ` s : A
` inl(A, B, s) : A+B

` A type ` B type ` t : B
` inr(A, B, t) : A+B

` A type ` B type ` {𝑥:A+B}C type
` s : A+B ` {𝑥:A}c1:C(inl(A, B, 𝑥)) ` {𝑥:B}c2:C(inr(A, B, 𝑥))

` cases(A, B, {𝑥}C(𝑥), s, {𝑥}c1(𝑥), {𝑥}c2(𝑥)) : C(s)
PLUS-BETA-1

` A type ` B type ` {𝑥:A+B}C type
` s : A ` {𝑥:A}c1:C(inl(A, B, 𝑥)) ` {𝑥:B}c2:C(inr(A, B, 𝑥))

` cases(A, B, {𝑥}C(𝑥), inl(A, B, s), {𝑥}c1(𝑥), {𝑥}c2(𝑥)) ≡ c1(s) : C(inl(A, B, s))
PLUS-BETA-2

` A type ` B type ` {𝑥:A+B}C type
` t : B ` {𝑥:A}c1:C(inl(A, B, 𝑥)) ` {𝑥:B}c2:C(inr(A, B, 𝑥))

` cases(A, B, {𝑥}C(𝑥), inr(A, B, t), {𝑥}c1(𝑥), {𝑥}c2(𝑥)) ≡ c2(t) : C(inr(A, B, t)) Figure A.6.: The disjoint unions in MLTT.
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` a : U ` {𝑥:El(a)}P : U
` σ(a, {𝑥}P) : U

` A type ` {𝑥:A}B type

` Σ(A, {𝑥}B(𝑥)) type
EL-SIGMA

` a : U ` {𝑥:El(a)}P : U
` El(σ(a, {𝑥}P(𝑥))) ≡ Σ(El(a), {𝑥}El(P(𝑥)))

` A type ` {𝑥:A}B type ` s : A ` t : B(s)
` pair(A, {𝑥}B(𝑥), s, t) : Σ(A, B)

` A type ` {𝑥:A}B type ` s : Σ(A, {𝑥}B(𝑥))
` π1(A, {𝑥}B(𝑥), s) : A

` A type ` {𝑥:A}B type ` s : Σ(A, {𝑥}B(𝑥))
` π2(A, {𝑥}B(𝑥), s) : B(π1(A, {𝑥}B(𝑥), s))

SIGMA-BETA-1
` A type ` {𝑥:A}B type ` s : A ` t : B(s)

` π1(A, {𝑥}B(𝑥), pair(A, B, s, t)) ≡ s : A

SIGMA-BETA-2
` A type ` {𝑥:A}B type ` s : A ` t : B(s)

` π1(A, {𝑥}B(𝑥), pair(A, B, s, t)) ≡ t : B(s)
SIGMA-EXT
` A type ` {𝑥:A}B type ` s : Σ(A, {𝑥}B(𝑥)) ` t : Σ(A, {𝑥}B(𝑥))

` π1(A, {𝑥}B(𝑥), s) ≡ π1(A, {𝑥}B(𝑥), t) : A
` π2(A, {𝑥}B(𝑥), s) ≡ π2(A, {𝑥}B(𝑥), t) : B(π1(A, {𝑥}B(𝑥), s))

` s ≡ t : Σ(A, {𝑥}B(𝑥))
Figure A.7.: Dependent sums in MLTT.

` a : U ` {𝑥:El(a)}b : U
` π(a, {𝑥}b(𝑥)) : U

` A type ` {𝑥:A}B type

` Π(A, {𝑥}B(𝑥)) type
EL-PI

` a : U ` {𝑥:El(a)}b : U
` El(π(a, {𝑥}b(𝑥))) ≡ Π(El(a), {𝑥}El(b(𝑥)))

` A type ` {𝑥:A}B type ` {𝑥:A}e : B(𝑥)
` λ(A, {𝑥}B(𝑥), {𝑥}e(𝑥)) : Π(A, {𝑥}B(𝑥))

` A type ` {𝑥:A}B type ` f : Π(A, {𝑥}B(𝑥)) ` s:A
` app(A, {𝑥}B(𝑥), f, s) : B(s)

PI-BETA
` A type ` {𝑥:A}B type ` {𝑥:A}𝑒 : B(𝑥) ` s:A
` app(A, {𝑥}B(𝑥), λ(A, {𝑥}B(𝑥), {𝑥}e(𝑥)), s) ≡ e(s) : B(s)
PI-EXT

` A type ` {𝑥:A}B type
` f : Π(A, {𝑥}B(𝑥)) ` g : Π(A, {𝑥}B(𝑥))

` {𝑥:A}app(A, {𝑥}B(𝑥), f, 𝑥) ≡ app(A, {𝑥}B(𝑥), g, 𝑥) : B(𝑥)
` f ≡ g : Π(A, {𝑥}B(𝑥)) Figure A.8.: Dependent products in

MLTT.



A union of a chain of
well-founded orders B.

Let us re-state the Lemma 4.4.2 about a union of a chain of well-
founded orders:

Lemma B.0.1 Let (𝐴𝑛 ,⊏𝑛)𝑛∈ℕ be well-founded orders such that for
every 𝑛 ∈ ℕ, it holds that 𝐴𝑛 ⊆ 𝐴𝑛+1, the order ⊏𝑛 is included in
⊏𝑛+1 and ⊏𝑛 is an initial segment of ⊏𝑛+1, i.e.

∀𝑥, 𝑦 ∈ 𝐴𝑛+1. (𝑥 ⊏𝑛+1 𝑦 ∧ 𝑦 ∈ 𝐴𝑛) =⇒ 𝑥 ⊏𝑛 𝑦.

Then 𝐴∞ = ∪𝑛∈ℕ𝐴𝑛 ordered by ⊏ with

∀𝑥, 𝑦 ∈ 𝐴∞. 𝑥 ⊏ 𝑦 ⇔ ∃𝑛 ∈ ℕ. 𝑥, 𝑦 ∈ 𝐴𝑛 ∧ 𝑥 ⊏𝑛 𝑦
is also a well-founded order.

Recall that a well-founded order on
a set 𝐼 is an irreflexive transitive
relation ⊏ for which the following
holds: for every subset 𝐴 ⊆ 𝐼

(∀𝑖 ∈ 𝐼.(∀𝑗 ⊏ 𝑖. 𝑗 ∈ 𝐴) =⇒ 𝑖 ∈ 𝐴)
=⇒ 𝐴 = 𝐼.

We call a set 𝐴 for which

(∀𝑖 ∈ 𝐼.(∀𝑗 ⊏ 𝑖. 𝑗 ∈ 𝐴) =⇒ 𝑖 ∈ 𝐴)
holds a ⊏-progressive set.

Proof. Fist we observe that from

∀𝑥, 𝑦 ∈ 𝐴𝑛+1. (𝑥 ⊏𝑛+1 𝑦 ∧ 𝑦 ∈ 𝐴𝑛) =⇒ 𝑥 ⊏𝑛 𝑦.

it follows that for every 𝑛 ∈ ℕ

∀𝑥, 𝑦 ∈ 𝐴∞. (𝑥 ⊏ 𝑦 ∧ 𝑦 ∈ 𝐴𝑛) =⇒ 𝑥 ⊏𝑛 𝑦.

We then observe that for every 𝑛 ∈ ℕ, subset 𝑆 ⊆ 𝐴∞ and 𝑦 ∈ 𝐴∞

∀𝑥 ∈ 𝐴∞. 𝑥 ⊏ 𝑦 ∧ 𝑦 ∈ 𝐴𝑛 =⇒ 𝑥 ∈ 𝑆
holds if and only if

∀𝑥 ∈ 𝐴∞. 𝑥 ⊏ 𝑦 ∧ 𝑦 ∈ 𝐴𝑛 =⇒ 𝑥 ∈ 𝑆 ∩ 𝐴𝑛
holds. From that we can deduce that for every 𝑛 ∈ ℕ, if a set 𝑆 ⊆ 𝐴∞
is ⊏-progressive, then 𝑆 ∩ 𝐴𝑛 is ⊏𝑛-progressive: Suppose 𝑆 ⊆ 𝐴∞ is
⊏-progressive, i.e.

∀𝑦 ∈ 𝐴∞. (∀𝑥 ∈ 𝐴∞. 𝑥 ⊏ 𝑦 =⇒ 𝑥 ∈ 𝑆) =⇒ 𝑦 ∈ 𝑆.
We want to prove 𝑆 ∩ 𝐴𝑛 is ⊏𝑛-progressive, i.e.

∀𝑦 ∈ 𝐴𝑛 . (∀𝑥 ∈ 𝐴𝑛 . 𝑥 ⊏𝑛 𝑦 =⇒ 𝑥 ∈ 𝑆 ∩ 𝐴𝑛) =⇒ 𝑦 ∈ 𝑆 ∩ 𝐴𝑛 .
Suppose 𝑦 ∈ 𝐴𝑛 and ∀𝑥 ∈ 𝐴𝑛 . 𝑥 ⊏𝑛 𝑦 =⇒ 𝑥 ∈ 𝑆 ∩ 𝐴𝑛 . We want
to show 𝑦 ∈ 𝑆 ∩ 𝐴𝑛 . Since 𝑦 ∈ 𝐴𝑛 by assumption, we only need to
show 𝑦 ∈ 𝑆. We use that 𝑆 is⊏-progressive, so we show ∀𝑥 ∈ 𝐴∞. 𝑥 ⊏
𝑦 =⇒ 𝑥 ∈ 𝑆. Let 𝑥 ∈ 𝐴∞ such that 𝑥 ⊏ 𝑦. Since 𝑦 ∈ 𝐴𝑛 we have that
𝑥 ∈ 𝐴𝑛 and 𝑥 ⊏𝑛 𝑦. We use the third assumption to deduce 𝑥 ∈ 𝑆∩𝐴𝑛 ,
which implies 𝑥 ∈ 𝑆.
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Now suppose 𝑆 ⊆ 𝐴∞ is ⊏-progressive. Then for every 𝑛 ∈ ℕ we have
that 𝑆 ∩ 𝐴𝑛 = 𝐴𝑛 . We can now compute

𝑆 = ∪𝑛∈ℕ(𝑆 ∩ 𝐴𝑛) = ∪𝑛∈ℕ𝐴𝑛 = 𝐴∞

which concludes the proof.
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Razširjeni povzetek v slovenščini

V tem povzetku so opisane poglavitne ideje, definicije in izreki dok-
torske disertacije. Natančni dokazi in podrobnosti niso prevedeni.

1. Uvod

Čeprav je znanih veliko konkretnih primerov teorij tipov [26, 36, 42,
47, 97–100, 142] [98]: Martin-Löf (1982), “Constructive

mathematics and computer program-
ming”
[100]: Martin-Löf (1998), “An intuitionis-
tic theory of types”
[97]: Martin-Löf (1975), “An intuitionistic
theory of types: predicative part”
[99]: Martin-Löf (1984), Intuitionistic
type theory
[47]: Coquand et al. (1988), “Inductively
defined types”
[36]: Church (1940), “A Formulation of
the Simple Theory of Types”
[142]: The Univalent Foundations
Program (2013), Homotopy Type Theory:
Univalent Foundations of Mathematics
[42]: Cohen et al. (2015), “Cubical Type
Theory: A Constructive Interpretation of
the Univalence Axiom”
[26]: Bezem et al. (2019), “The Univa-
lence Axiom in Cubical Sets”

, so bile splošne sintaktične definicije postavljene šele
nedavno [22, 66, 69, 144]

[22]: Bauer et al. (2020), A general
definition of dependent type theories
[69]: Haselwarter et al. (2021), Finitary
type theories with and without contexts
[144]: Uemura (2019), A General Frame-
work for the Semantics of Type Theory
[66]: Harper (2021), An Equational
Logical Framework for Type Theories

. Te definicije so odprle pot za analizo teorij
tipov na novem meta-nivoju, na katerem lahko študiramo, kaj imajo
teorije tipov skupnega in kakšne so med njimi interakcije. V tej dok-
torski disertaciji razvijemometa-analizo teorij tipov na podlagi sintak-
tične definicije iz [69], ki je povzeta v prvem delu disertacije (Part ‘Fini-
tary Type Theories’). Posebej se posvetimo interakcijam med teori-
jami tipov in definiramo več pojmov za transformacije ter dokažemo
nekaj njihovih meta-teoretičnih lastnosti. Uporabna vrednost trans-
formacij se pokaže v definiciji dopolnitve in dokazu izreka o dopol-
nitvi. Ker velik del motivacije za študijo teorij tipov prihaja iz njihove
uporabe v dokazovalnih pomočnikih, naslovimo tudi meta-teoretični
vidik, ki je tesno povezan z implementacijami. To je splošen algoritem
za preverjanje enakosti (equality checking algorithm), ki je tudi imple-
mentiran v dokazovalnem pomočniku Andromeda 2 [9]

[9]: Bauer et al. The Andromeda proof
assistant

.

Doktorska disertacija je sestavljena iz treh delov. Prvi del (Part ‘Fini-
tary Type Theories’) opiše formalno definicijo teorij tipov in pripravi
podlago iz meta-izrekov, drugi del (Part ‘Transformations of type the-
ories’) analizira transformacije in tretji del (Part ‘An equality checking
algorithm’) poda algoritem za preverjanje enakosti. Vsak del ima svoj
uvod (poglavja 2, 6 in 12), kjer so natančno podani tudi prispevki di-
sertacije.

1.1. Cilji doktorske disertacije

Namen doktorske disertacije je podati meta-analizo interakcij med
teorijami tipov v obliki transformacij, ki zadoščajo naslednjim kriteri-
jem:

▶ so dovolj splošne, da zajemajo končne teorije tipov (finitary type
theories) iz [69] [69]: Haselwarter et al. (2021), Finitary

type theories with and without contexts

,
▶ so sintaktične narave, da dopuščajo implementacije v dokazo-

valnih pomočnikih,
▶ ohranjajo izpeljivost,
▶ zajemajo nekatere uporabne primere transformacij,

in razviti meta-teorijo teorij tipov za oblikovanje splošnega algoritma
za preverjanje enakosti, ki

▶ deluje za končne teorije tipov (finitary type theories) iz [69] [69]: Haselwarter et al. (2021), Finitary
type theories with and without contexts

,
▶ zadošča izreku skladnosti,



▶ dopušča implementacije,
▶ deluje po pričakovanjih na teorijah tipov, ki jih srečamo v praksi.

Prvi cilj izpolnimo z definicijami pojmov sintaktične transformacije,
transformacije teorij tipov in dopolnitvene preslikave, za katere doka-
žemo, da ustrezajo želenim lastnostim, in pokažemo njihovo uporab-
nost v izreku o dopolnitvi. Drugi cilj dosežemo z oblikovanjem pogoja
objektne obrnljivosti, ki identificira primerna pravila za uporabo v al-
goritmu za preverjanje enakosti, in z algoritmom, ki zadošča izreku
skladnosti in je implementiran v dokazovalnempomočniku Andromeda 2.

2. Končne teorije tipov

V prvem delu disertacije povzamemo sintakso za končne teorije tipov,
kot jo uvajata Haselwarter in Bauer v [69] [69]: Haselwarter et al. (2021), Finitary

type theories with and without contexts
. V poglavju 2 povzamemo

ključne točke v razvoju teorij tipov in primerjamo definicijo končnih
teorij tipov s sorodnimi definicijami splošnih teorij tipov [22, 66, 144] [22]: Bauer et al. (2020), A general

definition of dependent type theories
[144]: Uemura (2019), A General Frame-
work for the Semantics of Type Theory
[66]: Harper (2021), An Equational
Logical Framework for Type Theories

.

2.1. Sintaksa končnih teorij tipov

Kot v [69] teorije tipov predstavimo s sintaktičnimi konstrukcijami
(poglavje 3). Meta-izreke nato dobimo z analizo abstraktne sintakse.
Glavna motivacija za ta pristop je implementacija v dokazovalnih po-
močnikih kot je Andromeda 2. Definicija teorij tipov, ki jo podamo, za-
jema odvisne teorije tipov v stilu Martin-Löfa. To so teorije, ki slonijo
na štirih vrstah sodb:

▶ “𝐴 type” pove, da je 𝐴 tip,
▶ “𝑡 : 𝐴” pove, da je term 𝑡 tipa 𝐴,
▶ “𝐴 ≡ 𝐵 by ★Ty” pove, da sta tipa 𝐴 in 𝐵 enaka in
▶ “𝑠 ≡ 𝑡 : 𝐴 by ★Tm” pove, da sta terma 𝑠 in 𝑡 enaka pri tipu 𝐴,

in na hipotetičnih sodbah Θ;Γ ` J, ki se nahajajo v kontekstu spre-
menljivk Γ in kontekstumetaspremenljivkΘ. V sodbah nastopajo izrazi
za tipe in terme. Izraz za tip je oblike S(𝑒1 , . . . , 𝑒𝑛), kjer je S primitiven
simbol uporabljen na argumentih 𝑒1 , . . . , 𝑒𝑛 , ali pa je oblikeM(𝑡1 , . . . , 𝑡𝑛),
kjer je M metaspremenljivka uporabljena na termih. Izraz za term je
lahko spremenljivka, uporaba primitivnega simbola na argumentih,
ali pa uporaba metaspremenljivke na termih. Celoten opis sintakse
se nahaja v poglavju 3.

Ta reperezentacija zajema širok nabor teorij tipov, kot na primer inten-
cionalna in ekstenzionalna Martin-Löfova teorija tipov (z univerzumi v
stilu Tarskega), homotopska teorija tipov, Churchev 𝜆-račun s prepros-
timi tipi in mnoge druge teorije tipov. Lahko je najti tudi primere teorij
tipov, ki ne ustrezajo naši definiciji, na primer v kubičnih teorijah tipov
ima interval posebne vrste sodbo, polimorfni 𝜆-računi kvantificirajo
čez vse tipe, itd.



1: Včasih za lažje razumevanje še
vedno uporabljamo tradicionalen način
pisanja pravil v obliki ulomkov.

2.2. Teorije tipov

Ključni sestavni del teorije tipov je deduktivni sistem (razdelek 4.1), ki
ga podamo s pravili, predlogami, ki generirajo zaprta pravila za izpelje-
vanje sodb. Teorije tipov opišemo v treh stopnjah. Začnemo s surovimi
pravili in teorijami tipov. Surovo pravilo je hipotetična sodba oblike
Θ; [] ` j, ki jo zapišemo1 kot

Θ =⇒ j.

Elementi Θ so premise pravila, j pa je zaključek. Pravilo je objektno
pravilo, kadar je j objektna sodba, in pravilo za enakost, kadar je j

sodba enakosti.

Primer 2.1 Tradicionalno obliko pravila vpeljave za odvisne pro-
dukte

Γ ` 𝐴 type Γ, 𝑥:𝐴 ` 𝐵 type

Γ ` Π(𝐴, {𝑥}𝐵) type
lahko prevedemo v obliko za surovo pravilo kot

A:(□ type), B:({𝑥:A} □ type) =⇒ Π(A, {𝑥}B(𝑥)) type.
Pri tem je □ sestavni del sintaktičnega pojma meje (boundary), ki
opiše vrsto metaspremenljivke.

Surovo teorijo tipov sestavljajo strukturna pravila, ki so prisotna v
vsaki teoriji tipov, in specifična pravila.

Definicija 2.2 Surova teorija tipov T nad signaturo Σ je družina
surovih pravil nad Σ, ki jim pravimo specifična pravila teorije T.
Pridružen deduktivni sistem teoriji T je sestavljen iz:

1. strukturnih pravil nad Σ:
a) pravila za spremenljivke, metaspremenljivke in abstrak-

cije (definicija 4.2.3, slika 4.1),
b) pravila za enakost (slika 4.2),
c) pravila za meje (slika 4.3);

2. instanciacije specifičnih pravil teorije T;
3. za vsako specifično objektno pravilo teorije T, instanciacije

pripadajočih pravil kongruence (definicija 4.2.2).

Definicija surove teorije tipov se nahaja
v definiciji 4.3.1.

Ker surove teorije tipov ne postavljajo nobenih pogojev za dobro ti-
piziranost premis in zaključka pravil, uvedemo končne teorije tipov.

Definicija 2.3 Surovo pravilo Θ =⇒ b 𝑒 je končno pravilo za surovo
teorijo tipov T, kadar sta ` Θ mctx in Θ; [] ` b izpeljivi sodbi.
Končna teorija tipov je surova teorija tipov T = (𝑇𝑖)𝑖∈I, za katero
obstaja dobro osnovana urejenost (I,⊏), pri kateri je vsako pravilo
𝑇𝑖 končno v fragmentu (𝑇𝑗)𝑗⊏𝑖 .

Definicija končne teorije tipov se nahaja
v definiciji 4.4.3.



Končne teorije tipov že zajemajo primere, ki si jih želimo opisati, pa
tudi nekatere bolj nenavadne primere.

Primer 2.4 Končne teorije tipov imajo mnoge lastnosti, ki si jih že-
limo, vendar pa se lahko obnašajo “nestandardno”. Naj bodo N, O
in S konstanta za tip, konstanta za term in eniški simbol za term.
Naslednja pravila zadoščajo pogojem za končno teorijo tipov

[] =⇒ N type, [] =⇒ O : N, n:(□ : N) =⇒ S(S(n)) : N
Vendar pa je tretje pravilo nekoliko težavno, saj postulira sestavljen
term S(S(n)).

V izogib takšnim nenavadnim primerom teorij tipov uvedemo še stan-
dardne teorije tipov, ki poskrbijo, da ima vsak simbol iz signature
svoje pravilo.

Definicija 2.5 Naj bo

M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ b

surovo objektno pravilo za mejo nad Σ. Pridruženo simbolno pravi-
lo za S ∉ |Σ| je surovo pravilo

M1:B1 , . . . ,M𝑛 :B𝑛 =⇒ b[S(M̂1 , . . . , M̂𝑛)]
nad razširjeno signaturo 〈Σ, S↦→(𝑐, [ar(B1), . . . , ar(B𝑛)])〉, kjer je M̂
generična uporabametaspremenljivkeM s pridruženomejoB, defini-
rana kot

1. 𝑀̂ = {𝑥1} · · · {𝑥𝑘}M(𝑥1 , . . . , 𝑥𝑘), če je ar(B) = (𝑐, 𝑘) in 𝑐 ∈
{Ty, Tm},

2. 𝑀̂ = {𝑥1} · · · {𝑥𝑘}★, če je ar(B) = (𝑐, 𝑘) in 𝑐 ∈ {EqTy, EqTm}.

Definicija 2.6 Končna teorija tipov je standardna, če so njena speci-
fična objektna pravila simbolna pravila in ima vsak simbol natanko
eno pridruženo pravilo.

2.3. Meta-izreki

Za surove, končne in standardne teorije tipov veljajo pričakovanimeta-
izreki, kot so dopustnost substitucije in enakosti substitucij (izrek 5.1.3),
dopustnost instanciacije metaspremenljivk (izrek 5.1.4) in enakosti in-
stanciacij (izrek 5.1.5), izpeljivost predpostavk (izrek 5.1.6), principi in-
verzije (izrek 5.2.2) in enoličnost tipiziranja (izrek 5.2.3). V razdelku 5.3
dokažemo še dodatne meta-izreke, ki jih uporabimo pri algoritmu za
preverjanje enakosti.



2.4. Prispevki

Namen prvega dela doktorske disertacije je opisati ozadjemeta-analize
in uvesti notacije, ki jih uporabljamo tekom disertacije. Definicije sin-
taktičnih entitet (poglavje 3) in teorij tipov (poglavji 4 in 5) sta podala
Haselwarter in Bauer v [69] [69]: Haselwarter et al. (2021), Finitary

type theories with and without contexts
in so opisane v obliki, ki je bila objavljena

v [24]
[24]: Bauer et al. (2021), An extensible
equality checking algorithm for depen-
dent type theories

.

Originalni prispevki so dodatnimeta-izreki: izrek 5.1.5 o sodbeno enakih
instanciacijah je bil dokazan skupaj s Haselwarterjem in Bauerjem.
Izreki iz razdelka 5.3 so prav tako originalni prispevek:

▶ meta-izreki o naravnem tipu: trditev 5.3.1, posledica 5.3.2, posle-
dica 5.3.3,

▶ meta-izreki o sodbeno enakih instanciacijah: lema 5.3.4, lema 5.3.5
in trditev 5.3.6.

3. Transformacije

Drugi del doktorske disertacije je posvečen transformacijammed teori-
jami tipov. Motivacija za razvoj transformacij izhaja iz uporabe teorij
tipov v dokazovalnih pomočnikih. Ko se lotimo formalizacije dokazov
se najprej srečamo z dilemo, kateri dokazovalni pomočnik uporabiti.
Tudi med dokazovalnimi pomočniki, ki slonijo na teorijah tipov, je
veliko možnosti [2, 5, 43, 45, 58, 78, 108, 133, 141, 146] [45]: (2021), The Coq proof assistant,

version 2021.02.2
[5]: (2021), The Agda proof assistant
[108]: Moura et al. (2015), “The Lean
Theorem Prover (System Description)”
[133]: Sozeau et al. (2019), “Coq Coq
correct! Verification of Type Checking
and Erasure for Coq, in Coq”
[58]: Gilbert et al. (2019), “Definitional
proof-irrelevance without K”
[2]: Abel et al. (2017), “Decidability of
Conversion for Type Theory in Type
Theory”
[146]: Vezzosi et al. (2019), “Cubical Agda:
A Dependently Typed Programming
Language with Univalence and Higher
Inductive Types”
[141]: The RedPRL Development Team
(2020), The ‘redtt’ theorem prover.
[43]: Cohen et al. (2018), The ‘cubicaltt’
theorem prover.
[78]: Isaev (2021), Arend Standard Library

. Izbira lahko
temelji na več faktorjih, od izkušenj s posameznim dokazovalnim po-
močnikom, narave problema, ki ga formaliziramo, ekspresivnosti teorije
tipov, razpoložljivosti potrebnih knjižnic, zmogljivosti dokazovalnega
pomočnika, itd. Ko se enkrat odločimo in začnemo formalizacijo, si je
ponavadi težko premisliti in nadaljevati v drugem dokazovalnem po-
močniku, saj moramo ves razvoj dokazov ročno prevesti v novo teorijo
tipov in nov jezik, če je takšna prevedba sploh mogoča.

Korak proti analizi kompatibilnosti formalizacij je študija kompatibil-
nosti teorij tipov. Pogosto dokaz uporablja le fragment teorije tipov in
ko je tak fragment skupen drugi teoriji je prevedba morda izvedljiva.
Študije transformacij formalnih sistemov so se začele že davno, nekaj
najbolj relevantnih je opisanih v razdelku 11.1.

V tem delu doktorske disertacije predlagamo tri pojme transforma-
cije: sintaktične transformacije (definicija 8.2.1), transformacije teorij
tipov (definicija 9.1.2) in dopolnitveno preslikavo (definicija 10.1.2). Da
bi lažje opisali, kako sintaktične transformacije delujejo na sintakso,
v poglavju 7 spomnimo na definicijo relativne monade in opišemo
posebne vrste monad za sintakso teorij tipov (razdelek 7.1).

3.1. Sintaktične transformacije

Ko preučujemo transformacijemed teorijami tipov, imamo večmožnosti.
Lahko slikamo simbole v simbole, simbole v izraze ali celo sodbe v
sodbe drugačne vrste, kot na primer v [152] [152]: Winterhalter et al. (2019), “Elimi-

nating Reflection from Type Theory”
. Osredotočimo se pred-

vsem na prvi dve možnosti.



Definicija 3.1 Preimenovanje simbolov je preslikava med signatu-
rama 𝑓 : Σ1 → Σ2, ki ohranja členosti simbolov: za vsak S ∈ Σ1 velja

ar(S) = ar( 𝑓 (S)).

Primer 3.2 Preimenovanja simbolov ponavadi vidimo kot utemeljitev,
da imena simbolov niso pomembna. Na primer, ni pomembno, kako
označimo tip naravnih števil, dokler postavimo prava pravila. Zlahka
si zamislimo dve signaturi

Σ1 =[ℕ : (Ty, []),
z : (Tm, []),
s : (Tm, [(Tm, 0)])]

Σ2 =[Nat : (Ty, []),
zero : (Tm, []),
succ : (Tm, [(Tm, 0)])],

ki obe predstavljata naravna števila. Preimenovanje simbolov

Σ1 → Σ2

ℕ ↦→ Nat
z ↦→ zero
s ↦→ succ

pokaže korespondenco med obema signaturama.

Kompozitum 𝑔 ◦ 𝑓 preimenovanj simbolov 𝑓 : Σ1 → Σ2 in 𝑔 : Σ2 → Σ2
kot preslikav je prav tako preimenovanje simbolov, saj 𝑓 in 𝑔 ohran-
jata členosti. Kompozitum je očitno asociativen in identična preslikava
je identično preimenovanje simbolov. Tako dobimo kategorijo sig-
natur.

Preimenovanja simbolov so že prva definicija sintaktičnih transforma-
cij, vendar je ta definicija zelo restriktivna. Potrebujemo bolj fleksi-
bilno definicijo, ki bo zajela več uporabnih primerov transformacij.

Definicija 3.3 Sintaktična transformacija 𝑓 : Σ1 → Σ2 je preslikava,
ki slika simbol S ∈ Σ1 v izraz iz ExprΣ2(cl(S), 𝜗; []), kjer je členost
ar(S) = (𝑐, 𝜗).

Sintaktične transformacije še vedno ohranjajo nekaj strukture. Sim-
bole slikamo v izraze enakega sintaktičnega razreda in členost sim-
bola definira obliko metaspremenljivk v izrazu. Poseben primer sin-
taktične transformacije je identična transformacija, ki slika simbole
v njihove generične uporabe. Več primerov sintaktičnih transformacij
je v razdelkih 8.2 in 9.3.

Vsaka sintaktična transformacija deluje na izrazih na naraven način.
Tako dvignemo sintaktično transformacijo na preslikavo med izrazi
nad signaturami.



Definicija 3.4 Delovanje sintaktične transformacije 𝑓 : Σ1 → Σ2 je
preslikava

𝑓∗ : ExprΣ1(c, 𝜗; 𝛾) → ExprΣ2(c, 𝜗; 𝛾)
za vsak sintaktični razred c, obliko metaspremenljivk 𝜗 in obliko
spremenljivk 𝛾, podana z

𝑓∗a = a, 𝑓∗𝑥 = 𝑥, 𝑓∗★ = ★,

𝑓∗({𝑥}𝑒) = {𝑥}( 𝑓∗𝑒),
𝑓∗(M(𝑡1 , . . . , 𝑡𝑚)) = M( 𝑓∗𝑡1 , . . . , 𝑓∗𝑡𝑚)

𝑓∗(S(𝑒1 , . . . , 𝑒𝑛)) = 〈M1 ↦→ 𝑓∗𝑒1 , . . .M𝑛 ↦→ 𝑓∗𝑒𝑛〉∗ 𝑓 (S)
kjer so M1 , . . . ,M𝑛 metaspremenljivke iz 𝜗 v ar(S) = (cl(S), 𝜗).

Kompozitum 𝑔 ◦ 𝑓 : Σ1 → Σ3 sintaktičnih preslikav 𝑓 : Σ1 → Σ2 in
𝑔 : Σ2 → Σ3 je definiran kot

(𝑔 ◦ 𝑓 )(S) = 𝑔∗( 𝑓 S).

V razdelku 8.3 pokažemo, da sintaktične transformacije tvorijo rela-
tivno monado za sintakso. Od tod izhajajo pričakovane lastnosti sin-
taktičnih transformacij: delovanje ohranja identiteto (lema 8.3.1), de-
lovanje interagira s substitucijami (lema 8.3.2) in z instancijacijami
(lema 8.3.3), delovanje ohranja kompozitum (lema 8.3.4) in kompozi-
tum je asociativen (posledica 8.3.5).

3.2. Transformacije teorij tipov

Sintaktične transformacije so dobra podlaga za pojem transformacij
med teorijami tipov, vendar ne upoštevajo zelo pomembnega aspekta
teorij tipov: deduktivnega sistema in izpeljivosti. Zato definicijo trans-
formacije nadgradimo v transformacije teorij tipov.

Definicija 3.5 Transformacija teorij tipov 𝑓 : T→ U je sintaktična
transformacija 𝑓 : ΣT → ΣU, tako da za vsako pravilo Θ =⇒ j v
teoriji Tpodamo izpeljavo D od 𝑓∗Θ =⇒ 𝑓∗j v teoriji U.

Tako definirane transformacije ohranjajo izpeljivost, kot veli naslednji
izrek.

Izrek 3.6 Naj bo 𝑓 : T→ U transformacija teorij tipov in Θ;Γ ` J

izpeljiva sodba v teoriji T. Potem je

𝑓∗Θ; 𝑓∗Γ ` 𝑓∗J
izpeljiva sodba v teoriji U. Podobno velja tudi za izpeljive meje.

Dokaz se nahaja pod izrekom 9.1.3.

Podobno kot pri sodbeno enakih instanciacijah lahko definiramo so-
dbeno enake transformacije.



2: Dopolnjevalec je natančno definiran
v definiciji 10.3.2

Definicija 3.7 Transformaciji teorij tipov 𝑓 : T→ U in 𝑔 : T→ U

sta sodbeno enaki, če je za vsako objektno pravilo 𝑅 = Θ =⇒ b 𝑒 v
teoriji T sodba

𝑓∗Θ; [] `U ( 𝑓∗b) 𝑓∗𝑒 ≡ 𝑔∗𝑒

izpeljiva.

Delovanje sodbeno enakih transformacij daje sodbe enakosti kot je
razvidno iz trditev 9.1.6, 9.1.7, 9.1.8, 9.1.9 in 9.1.10.

Z definicijo transformacij lahko postavimo kategorijo teorij tipov, kjer
so objekti (surove) teorije tipov inmorfizmi transformacije. V razdelku 9.2
pokažemo, da ima ta kategorija začetni objekt in koprodukte.

Ustreznost definicije transformacij teorij tipov pokažejo primeri, ki
jih definicija zajema. Poleg identične transformacije in preimenovanj
simbolov v razdelku 9.3 pokažemo še, da je primer tudi Curry-Howar-
dova korespondenca [48, 49, 74, 149] [149]: Wadler (2015), “Propositions as

Types”
[48]: Curry (1934), “Functionality in
Combinatory Logic”
[49]: Curry et al. (1958), Combinatory
logic. Vol. I
[74]: Howard (1980), “The Formulae-as-
Types Notion of Construction”

, ki prevede logiko prvega reda v
Martin-Löfovo teorijo tipov in pri tem klasično logiko prevede v intu-
icionistično logiko. Transformacije nam tudi omogočajo študijo konz-
ervativnih razširitev z definicijo (primer 9.3.5). Uporabnost transforma-
cij pa najbolj pokaže primer dopolnitve.

3.3. Izrek o dopolnitvi

Ko oblikujemo teorijo tipov za uporabo v dokazovalnem pomočniku,
se srečamo z dilemo, kako polna naj bo sintaksa. Če so vsi termi polno
označeni s tipi, jih je lažje algoritmično procesirati in imajo lepe meta-
teoretične lastnosti. Vendar pa je takšna sintaksa hitro neobvladljiva,
zato se v praksi uporablja bolj ekonomična sintaksa, kjer so nekatere
oznake tipov izpuščene.

To neskladje se pogosto rešuje tako, da oblikujemo dve teoriji tipov:
prva, imenujmo jo S, vsebuje vse oznake tipov in ponavadi prebiva v
jedru dokazovalnega pomočnika, druga, ekonomična teorija T, pa je
namenjena uporabnikom. TeorijoTnato sistemprevede vSz uporabo
dopolnjevalca2. Ta pojav lahko opazimo v praksi, na primer ko dokazo-
valna pomočnika Agda [5]

[5]: (2021), The Agda proof assistant

in Coq [45]

[45]: (2021), The Coq proof assistant,
version 2021.02.2

določita implicitne argumente.

Proces dopolnitve lahko opišemo z naslednjim diagramom.

S T

𝑟

ℓ

Začnemo s končno teorijo tipov T, ki predstavlja ekonomično verzijo.
Verzija teorije s polnimi oznakami tipov je standardna teorija tipov S,
saj pri standardni teoriji pravila za simbole natančno zapišejo vse



premise. Iz teorije S v teorijo Tnas povede “pozabljiva” transforma-
cija teorij tipov 𝑟, ki ji pravimo retrogradna transformacija. Ta trans-
formacija pobriše oznake tipov, a je še vedno konzervativna. Bolj za-
nimiva pa je preslikava ℓ v obratni smeri, ki ji pravimo dopolnitvena
preslikava in slika izpeljave iz teorije T v sodbe v teoriji S ter deluje
kot prerez retrogradne transformacije. Natančna definicija dopolni-
tvene preslikave se nahaja v definiciji 10.1.2.

Pri danih pogojih je retrogradna transformacija surjektivna na izpeljivih
sodbah (posledica 10.1.4), dopolnitvena preslikava pa je določena do
sodbene enakosti natančno (posledica 10.1.6). V razdelku 10.1.2 doka-
žemo, da ima dopolnitev naslednjo univerzalno lastnost.

Izrek 3.8 Naj bo T končna teorija tipov in (S1 , 𝑟1 , ℓ1) ter (S2 , 𝑟2 , ℓ2)
dopolnitvi teorije T. Potem obstaja konzervativna transformacija
teorij tipov 𝑓 : S1 → S2 z dopolnitveno preslikavo ℓ 𝑓 : S2 → S1, da
velja 𝑟2 ◦ 𝑓 = 𝑟1. Transformacija 𝑓 je enolična do sodbene enakosti
natančno.

Univerzalna lastnost dopolnitve nam pove, da če dopolnitev obstaja,
je enolična (do sodobene enakosti natančno). Naslednji izrek o dopol-
nitvi pa pove, da vsaka končna teorija tipov ima dopolnitev, ki jo v
dokazu izreka (razdelka 10.2.1 in 10.2.2) tudi konstruiramo.

Izrek 3.9 Vsaka končna teorija tipov ima dopolnitev.

V razdelku 10.3 preučimo nekaj algoritmičnih lastnosti dopolnitve in
kako se le-ta povezuje s preverjanjem tipov ter enakosti.

Izrek 3.10 Končna teorija T ima dopolnjevalec, če in samo če ima
Todločljivo preverjanje tipov in enakosti.

3.4. Prispevki

Glavna dva prispevka sta definicija transformacije teorij tipov in dokaz
izreka o dopolnitvi (izrek 10.2.1). Vse konstrukcije in dokazi so konstruk-
tivni.

Definicijo transformacij gradimo postopoma:

▶ Opišemo splošno shemo relativnihmonad za sintakso (razdelek 7.1).
▶ Definiramo pojem preimenovanja simbolov (definicija 8.1.1).
▶ Definiramo sintaktične transformacije (definicija 8.2.1) in dokažemo,

da tvorijo relativnomonado nad kategorijo signatur (razdelek 8.3).
▶ Definiramo transformacije teorij tipov (definicija 9.1.2) in dokažemo,

da ohranjajo izpeljivost (izrek 9.1.3).
▶ Dokažemo nekajmeta-teoretičnih lastnosti sodbeno enakih trans-

formacij (trditev 9.1.6, posledica 9.1.10).
▶ Definiramo kategorijo teorij tipov in transformacij ter pokažemo,

da ima začetni objekt (trditev 9.2.2) in koprodukte (trditev 9.2.3).
▶ Pokažemo, da je Curry-Howardova korespondenca primer trans-

formacije (primer 9.3.1, dodatek A).



▶ Z uporabo meta-teoretičnih lastnosti transformacij med teori-
jami tipov dokažemo, da je razširitev z definicijo konzervativna
(primer 9.3.5).

Podamo matematično definicijo dopolnitve (definicija 10.1.3) in doka-
žemo, da ima univerzalno lastnost (izrek 10.1.7). Formuliramo in dokažemo
izrek o dopolnitvi (izrek 10.2.1, razdelka 10.2.1 in 10.2.2). Analiziramo al-
goritmične lastnosti dopolnitve:

▶ Definiramo dopolnjevalec, algoritem za dopolnitev (definicija 10.3.2).
▶ Povežemo odločljivo preverjanje tipov in enakosti z odločljivim

preverjanjem (samo) enakosti v standardnih teorijah tipov (trditev 10.3.5).
▶ Povežemo izračunljivo dopolnitev z odločljivim preverjanjem tipov

in enakosti (izrek 10.3.9).
▶ Povežemo preverjanje tipov in enakosti končne teorije tipov s

preverjanjem v dopolnitvi (izrek 10.3.10, posledica 10.3.11).

4. Algoritem za preverjanje enakosti

Algoritmi za preverjanje enakosti so ključne komponente dokazoval-
nih pomočnikov, ki temeljijo na teorijah tipov [2, 5, 45, 58, 108, 133] [45]: (2021), The Coq proof assistant,

version 2021.02.2
[5]: (2021), The Agda proof assistant
[108]: Moura et al. (2015), “The Lean
Theorem Prover (System Description)”
[133]: Sozeau et al. (2019), “Coq Coq
correct! Verification of Type Checking
and Erasure for Coq, in Coq”
[58]: Gilbert et al. (2019), “Definitional
proof-irrelevance without K”
[2]: Abel et al. (2017), “Decidability of
Conversion for Type Theory in Type
Theory”

.
Uporabnika osvobodijo bremena dokazovanja trivialnih sodbenih ena-
kosti in zagotavljajo algoritme za računanje z normalizacijo. Nekateri
sistemi gredo korak dalje [39, 50]

[50]: The Dedukti logical framework
[39]: Cockx et al. (2016), “Sprinkles of ex-
tensionality for your vanilla type theory”

in dopuščajo uporabnikom, da razšir-
ijo vgrajene algoritme za preverjanje enakosti.

Situacija je manj ugodna v dokazovalnem pomočniku, ki podpira splo-
šne teorije tipov, kot jih Andromeda 2 [9, 20]

[9]: Bauer et al. The Andromeda proof
assistant
[20]: Bauer et al. (2018), “Design and
Implementation of the Andromeda
Proof Assistant”

. Tam v splošnem ni nu-
jno, da je na voljo algoritem za preverjanje enakosti. Kljub temu pa
bi moral dokazovalni pomočnik zagotoviti podporo za algoritme za
preverjanje enakosti, ki so preprosti za uporabo in dobro delujejo
v pogostih primerih. S tem namenom smo razvili in implementirali
splošen algoritem za preverjanje enakosti, ki zadošča izreku sklad-
nosti.

Algoritem deluje za standardne teorije tipov (definicija 4.4.5) in je za-
snovan po vzoru algoritmov za preverjanje enakosti [3, 136] [136]: Stone et al. (2006), “Extensional

equivalence and singleton types”
[3]: Abel et al. (2012), “On Irrelevance
and Algorithmic Equality in Predicative
Type Theory”

, ki imajo
dve fazi: najprej nastopi tipsko vodena faza, kjer uporabljamo prav-
ila ekstenzionalnosti, nato pa nastopi faza normalizacije, ki uporablja
pravila za izračun (𝛽-pravila). Na običajnih primerih (Martin-Löfova
teorija tipov, 𝜆-račun, sistem F) se algoritem vede enako kot stan-
dardni algoritmi za preverjanje enakosti.

4.1. Vzorci in objektno obrnljiva pravila

Algoritem za preverjanje enakosti izpelje enačbo z uporabo (instan-
ciacijo) pravil teorije tipov. Da bi algoritem lahko določil, ali je pravi-
lo primerno za uporabo in kako se končna enačba ujema z vzorcem,
določimo pogoje, pri katerih pravila lahko uporabljamo.

Definicija 4.1 Pravilo Ξ =⇒ j je deterministično, če za vsako sodbo



Θ;Γ ` j′ obstaja največ ena instanciacija 𝐼metakontekstaΞ nadΘ;Γ,
da velja 𝐼∗j= j′.

V algoritmu bomo uporabljali samo deterministična pravila. Nadalje
si pomagamo z vzorci.

Definicija 4.2 Vzorci so izrazi v katerih se vsaka metaspremenljivka
pojavi največ enkrat bodisi brez argumentov M(), ali kot argument
oblike { ®𝑥}M(®𝑥), kjer so ®𝑥 edine vezane spremenljivke. Vzorci so
opisani s slovnico na spodnji sliki.

Vzorec tip 𝑃 ::= M() �� S(𝑞1 , . . . , 𝑞𝑛) če mv(𝑞𝑖) ∩mv(𝑞 𝑗) = ∅ za 𝑖 ≠ 𝑗

Vzorec term 𝑝 ::= S(𝑞1 , . . . , 𝑞𝑛) če mv(𝑞𝑖) ∩mv(𝑞 𝑗) = ∅ za 𝑖 ≠ 𝑗

Vzorec argument 𝑞 ::= { ®𝑥}M(®𝑥) �� 𝑃
�� 𝑝

Notacija mv(𝑒) označuje množico
metaspremenljivk, ki se pojavijo v
izrazu 𝑒 .

Vzorci nam dajejo sintaktični kriterij za želene pogoje na pravilih. Če
je Ξ =⇒ b𝑝 pravilo, kjer je 𝑝 vzorec, ki zajame vse objektne metaspre-
menljivke iz Ξ, potem je pravilo deterministično.

Bistveni pogoj za uporabo pravil v algoritmu za preverjanje enakosti
je objektna obrnljivost. Izpeljivo praviloΞ =⇒ j je objektno obrnljivo,
če velja naslednje: če je 𝐼 instanciacija metakonteksta Ξ nad Θ; [] in
velja ` Θ mctx ter |Ξ| ∩ |Θ | = ∅, ter je Θ; [] ` 𝐼∗j izpeljiva sodba, potem
je 𝐼 izpeljiva instanciacija do metaspremenljivk za enačbe natančno.

Natančna definicija objektne
obrnljivosti je v definiciji 13.2.2.

Poleg vzorcev potrebujemo še dodaten sintaktični pogoj za objektno
obrnljivost: izpeljivost, ki je naravna za spremenljivke. Pravimo, da
je izpeljiva objektna sodba naravna za spremenljivke, če ima izpel-
javo, v kateri nobeni uporabi pravil TT-META in TT-VAR v naslednjem
koraku ne sledi pravilo za pretvorbo TT-CONV-TM, razen če se pravilo
za (meta)spremenljivko uporabi v pod-izpeljavi za sodbo enakosti.

Formalno je pogoj naravnosti za spre-
menljivke podan v definiciji 13.2.6.

Tako dobimo zadosten sintaktični pogoj za objektno obrnljivost.

Trditev 4.3 V standardni teoriji tipov naj bo Ξ =⇒ b𝑝 izpeljivo
končno objektno pravilo, ki je naravno za spremenljivke. Če je 𝑝
vzorec, ki vsebuje vse objektne spremenljivke iz Ξ, potem je pravilo
objektno obrnljivo.

4.2. Pravila za izračun in ekstenzionalnost

Algoritem za preverjanje enakosti uporablja dve vrsti pravil za enačbe.
Začnemo s pravili, ki usmerjajo normalizacijo.

Definicija 4.4 Izpeljivo končno pravilo Θ =⇒ 𝐴 ≡ 𝐵 je pravilo za
izračun za tip, če je pravilo Θ =⇒ 𝐴 type deterministično in objek-
tno obrnljivo.



Definicija 4.5 Izpeljivo končno pravilo Θ =⇒ 𝑢 ≡ 𝑣 : 𝐴 je pravilo
za izračun za term, če je 𝑢 uporaba simbola za term in je pravilo
Θ =⇒ 𝑢 : 𝜏Θ;[](𝑢) deterministično in objektno obrnljivo.

Pogoj objektne obrnljivosti v pravilih za izračun lahko preverjamo sin-
taktično z vzorci in naravnostjo za spremenljivke, kot je razvidno iz
trditve 14.1.3.

Primer 4.6 Primer pravila za izračun je 𝛽-pravilo za uporabo funkcij

` A type ` {𝑥:A} B type ` {𝑥:A} s : B(𝑥) ` t : A

` apply(A, {𝑥}B(𝑥), λ(A, {𝑥}B(𝑥), {𝑥}s(𝑥)), t) ≡ s(t) : B(t) ,

ki ga zaradi tehničnih pogojev lineariziramo v obliko

` A1 type ` {𝑥:A1} B1 type
` A2 type ` {𝑥:A2} B2 type
` {𝑥:A2} s : B2(𝑥) ` t : A1

` A1 ≡ A2 ` {𝑥:A1}B1(𝑥) ≡ B2(𝑥)
` apply(A1 , {𝑥}B1(𝑥), λ(A2 , {𝑥}B2(𝑥), {𝑥}s(𝑥)), t) ≡ s(t) : B1(t)

.

Drugo vrsto pravil algoritem uporablja, da reducira enačbo na po-
možne enačbe.

Definicija 4.7 Pravilo za ekstenzionalnost je izpeljivo končno pravi-
lo oblike

Θ, s:(□ : 𝐴), t:(□ : 𝐴),Φ =⇒ s ≡ t : 𝐴

tako da Φ vsebuje samo metaspremenljivke za enačbe in je pravilo
Θ =⇒ 𝐴 type deterministično in objektno obrnljivo.

Podobno kot pri pravilih za izračun lahko pravila za ekstenzionalnost
preverjamo s sintaktičnim kriterijem (trditev 14.2.2).

Primer 4.8 Pravila za ekstenzionalnost ponavadi pravijo, da so ele-
menti tipa enaki, kadar so enaki njihovi deli. Na primer pravilo za
ekstenzionalnost za produkte je

` A type ` B type ` s : A × B ` t : A × B
` fst(A, B, s) ≡ fst(A, B, t) : A ` snd(A, B, s) ≡ snd(A, B, t) : B

` s ≡ t : A × B
.

4.3. Opis algoritma

Algoritem za preverjanje enakosti je natančno podan v poglavju 15.
Algoritem sestavljata dve fazi: tipsko vodena faza, kjer uporabljamo
pravila ekstenzionalnosti, ter faza normalizacije, ki temelji na prav-
ilih za izračun. Algoritem lahko na grobo orišemo z naslednjim dia-
gramom.



Faza normalizacije Tipsko vodena faza

primerjava podizrazov

pomožne enačbe

normaliziraj tip enačbe

ni več ekst. pravil

normaliziraj
podizraze

pomožne
enačbe

𝐴 ≡ 𝐵 by □ 𝑠 ≡ 𝑡 : 𝑇 by □

pravila za izračun pravila ekstenzionalnosti

Algoritem sprejme kot vhodni podatek izpeljivo mejo in bodisi vrne
izpeljivo enačbo, ki ima dano mejo, ali pa ne uspe najti izpeljave. Če
je dana meja za enakost tipov, algoritem takoj vstopi v fazo normal-
izacije, sicer pa najprej nastopi tipsko vodena faza.

Normalizacija prepiše izraz S(𝑒1 , . . . , 𝑒𝑛) tako, da normalizira nekatere
izmed argumentov 𝑒1 , . . . , 𝑒𝑛 , ki jim pravimo glavni argumenti (prin-
cipal arguments) in uporabi pravila za izračun ter ponovi postopek.
Parametrizirana je z naslednjimi podatki:

1. standardno teorijo tipov T,
2. družino C pravil za izračun v teoriji T,
3. za vsak simbol S, ki vzame 𝑘 argumentov, množico ℘(S) ⊆ {1, . . . , 𝑘}

njegovih glavnih argumentov.

Normalizacija ima tri neodvisne različice:

Θ;Γ ` B𝑒 ⊲ 𝑒′ normaliziraj argument 𝑒 v 𝑒′,
Θ;Γ ` bS(®𝑒) ⊲p S(®𝑒′) normaliziraj glavne argumente od S,

Θ;Γ ` b 𝑒 ⊲c 𝑒′ uporabi pravilo za izračun in prepiši 𝑒 v 𝑒′.

V posebnem primeru

Θ;Γ ` (𝐴 ⊲ 𝐴′) type in Θ;Γ ` 𝑡 ⊲ 𝑡′ : 𝐵



izražata dejstvi, da se tip 𝐴 normalizira v 𝐴′ in term 𝑡 v 𝑡′. Postopek
normalizacije je podan na sliki 15.1.

Preverjanje enakosti poteka v naslednjihmedsebojno rekurzivnih fazah:

Θ;Γ ` B𝑒 ∼ 𝑒′ 𝑒 in 𝑒′ sta enaka argumenta
Θ;Γ ` 𝑠 ∼e 𝑡 : 𝐴 𝑠 in 𝑡 sta ekstenzionalno enaka
Θ;Γ ` 𝑠 ∼n 𝑡 : 𝐴 normalizirana terma 𝑠 in 𝑡 sta enaka
Θ;Γ ` 𝐴 ∼n 𝐵 normalizirana tipa 𝐴 in 𝐵 sta enaka

Prva je splošna primerjava argumentov 𝑒 in 𝑒′ pri objektni meji B,
druga je tipsko vodena faza in tretja je faza normalizacije, ki primerja
normalizirane izraze. Induktivna specifikacija teh faz se nahaja na
sliki 15.2. Faze so parametrizirane s standardno teorijo tipovT, z družino
pravil ekstenzionalnosti E nad T, družino pravil za izračun C nad T,
in specifikacijo glavnih argumentov ℘.

Algoritem zadošča izrekoma skladnosti, ki sta dokazana v razdelku 15.3.

Izrek 4.9 (Skladnost normalizacije) Naj bosta v standardni teoriji
tipov podani množica pravil za izračun C in specifikacija glavnih
argumentov ℘. Za objektni meji B in b velja:

1. Če velja Θ;Γ `B𝑒 in Θ;Γ `B𝑒 ⊲ 𝑒′ , potem velja Θ;Γ `B𝑒 ≡ 𝑒′
in Θ;Γ `B𝑒′ .
2. Če velja Θ;Γ ` b 𝑒 in Θ;Γ ` b 𝑒 ⊲p 𝑒′ , potem velja Θ;Γ ` b 𝑒 ≡ 𝑒′ in
Θ;Γ ` b 𝑒′ .
3. Če velja Θ;Γ ` b 𝑒 in Θ;Γ ` b 𝑒 ⊲c 𝑒′ , potem velja Θ;Γ ` b 𝑒 ≡ 𝑒′ in
Θ;Γ ` b 𝑒′ .

Izrek 4.10 (Skladnost preverjanja enakosti) Naj bodo v standardni
teoriji tipov podani družini C in Epravil za izračun in ekstenzional-
nost ter specifikacija glavnih argumentov ℘. Za objektno mejo B

velja:

1. Θ;Γ ` B𝑒 ≡ 𝑒′ velja, če velja

Θ;Γ ` B𝑒 , Θ;Γ ` B𝑒′ , in Θ;Γ ` B𝑒 ∼ 𝑒′ .

2. Θ;Γ ` 𝑢 ≡ 𝑣 : 𝐴 velja, če velja

Θ;Γ ` 𝑢 : 𝐴, Θ;Γ ` 𝑣 : 𝐴, in Θ;Γ ` 𝑢 ∼e 𝑣 : 𝐴.

3. Θ;Γ ` 𝐴 ≡ 𝐵 velja, če velja

Θ;Γ ` 𝐴 type, Θ;Γ ` 𝐵 type, in Θ;Γ ` 𝐴 ∼n 𝐵.

4. Θ;Γ ` 𝑢 ≡ 𝑣 : 𝐴 velja, če velja

Θ;Γ ` 𝑢 : 𝐴, Θ;Γ ` 𝑣 : 𝐴, in Θ;Γ ` 𝑢 ∼n 𝑣 : 𝐴.



4.4. Implementacija v Andromedi 2

Algoritem je implementiran v dokazovalnem pomočniku Andromeda 2
[9, 20, 23] [20]: Bauer et al. (2018), “Design and

Implementation of the Andromeda
Proof Assistant”
[9]: Bauer et al. The Andromeda proof
assistant
[23]: Bauer et al. (2020), “Equality
Checking for General Type Theories in
Andromeda 2”

, kjer uporabnik lahko definira in uporablja katero koli stan-
dardno teorijo tipov. Andromeda 2 je dokazovalni pomočnik stila LCF, tj.
meta-nivojski programski jezik z abstraktnim tipom za sodbe in meje
ter z izpeljivimi pravili, ki jih nadzoruje zaupanja vredno jedro, sestav-
ljeno iz približno 4200 vrstic kode v jeziku OCaml. Jedro implementira
različico teorije tipov brez kontekstov, ki je definirana v [69]

[69]: Haselwarter et al. (2021), Finitary
type theories with and without contexts

.

Implementacijo algoritma za preverjanje enakosti sestavlja približno
1400 vrstic programske kode v jeziku OCaml. Koda ni del jedra An-
dromede, vendar pa jedro validira vsak korak v sklepanju. Uporabnik
mora zgolj podati pravila za enakost, ki jih želi uporabljati, nato pa
jih algoritem avtomatično klasificira kot pravila za izračun ali prav-
ila ekstenzionalnosti, zavrne neustrezna pravila in izbere glavne argu-
mente. V razdelku 16.1 je opisanih nekaj primerov uporabe implemen-
tiranega algoritma.

4.5. Prispevki

Podamo splošen algoritem za preverjanje enakosti (poglavje 15), ki
deluje za standardne teorije tipov:

▶ Podamo definicijo pravil za izračun (definiciji 14.1.1 in 14.1.2) ter
pravil ekstenzionalnosti (definicija 14.2.1) preko pogoja objektne
obrnljivosti.

▶ Podamo zadosten sintaktični kriterij za prepoznavanje in uporabo
pravil za izračun in ekstenzionalnost.

▶ Dokažemo, da algoritem zadošča izreku o skladnosti (razdelek 15.3).
▶ Algoritem implementiramo v dokazovalnempomočniku Andromeda 2.
▶ Pokažemo vrsto primerov uporabe algoritma v dokazovalnem

pomočniku Andromeda 2 (razdelek 16.1).
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