
MEETING ON SYNTAX
AND SEMANTICS OF TYPE THEORY

STOCKHOLM, 20 MAY 2022Anja Petković Komel

THE ESSENCE OF
ELABORATION

joint work with Andrej Bauer

WHAT IS ELABORATION?

DISCLAIMER: NOT ALL ANSWERS ARE INCLUDED

Elaboration =

Type checking + compilation ?

DISCLAIMER: NOT ALL ANSWERS ARE INCLUDED

Elaboration =

Transformation into mathematical
objects?

Figuring out missing (mathematical)
context information?

DISCLAIMER: NOT ALL ANSWERS ARE INCLUDED

We don’t really know.

 ???

Confused, frustrated.

Adding missing types

Adding missing evidence

 (termination checker, universe levels)

IDEA OF ELABORATION:

Adding missing information

⊢ A type ⊢ B type x : A ⊢ e : B

⊢ λ(x.e) : A → B

⊢ A type ⊢ B type x : A ⊢ e : B

⊢ λ(A, B, x.e) : A → B

Elaboration map - a map ℓ : T → S from an economic type theory
to a fully annotated type theory

Elaborator - an algorithm performing adding information (related
to type-checking)

TERMINOLOGY

What are the properties of the economic syntax/type theory?

What are the properties of the fully annotated (kernel) syntax/type theory?

What is an elaboration map?

What is the input and output of elaborator?

How does elaborator relate to type checking?

QUESTIONS TO ANSWER

THE ESSENCE OF ELABORATION

S T

r

ℓstandard type theory finitary type theory

elaboration map

retrogression
transformation
(conservative)

(kernel) (economic)

A signature of symbols.

4 kinds of judgements.

Boundaries (for every judgement kind).

Hypothetical judgements and boundaries.

FINITARY TYPE THEORY
A finitary type theory [HB21] is a formal deductive system that consists of:

A type a : A A ≡ B by ★ a ≡ b : A by ★

▢ type ▢ : A A ≡ B by ▢ a ≡ b : A by ▢

Γ ⊢ 𝒥 Γ ⊢ ℬ variable context +
 metavariable context

Structural rules: Variable rule, reflexivity, symmetry and transitivity of equations etc.

Specific rules:

Congurence rules (for every object rule).

RULES OF FINITARY TYPE THEORY
A finitary type theory [HB21] is a formal deductive system that consists of:

Object rules Equality rules
⊢ A type ⊢ B type

⊢ A → B type

⊢ A type ⊢ B type x : A ⊢ e : B

⊢ λ(x.e) : A → B

⊢ N ≡ ℕ

⊢ A type ⊢ B type ⊢ a : A ⊢ b : B

⊢ fst(pair(a,b)) ≡ a : A

Such that the rules have well-formed boundaries (presuppositivity).

Compare the two rules.

SYMBOL RULES

⊢ A type ⊢ B type ⊢ p : A ⨉ B

⊢ fst(p) : A

⊢ A type ⊢ B type ⊢ p : A ⨉ B

⊢ fst(A, B, p) : A

Faithfully records the
(proof-relevant parts of)

the premises.
Better for user input.

A type theory is standard if every object rule is a
symbol rule and every symbol has exactly one
symbol rule.

STANDARD TYPE THEORY

 inversion

 uniqueness of typing

Standard type theories are well behaved:

THE ESSENCE OF ELABORATION

S T

r

ℓstandard type theory finitary type theory

elaboration map

retrogression
transformation
(conservative)

(kernel) (economic)

SYNTACTIC TRANSFORMATION
Recall from Andrej Bauer’s talk:

U T

𝑺 e
a symbol from
 signature of U

a well-formed
expression in T

f :

The syntactic transformation f acts on expressions e’ in U to produce
expressions f

*
e’ in T.

Syntactic transformations form a relative monad for syntax .

TYPE-THEORETIC TRANSFORMATION
A type-theoretic transformation is a syntactic transformation f : U → T such that for every specific rule

in U there is a derivation of

in T.

P₁ ··· Pₙ

⊢ 𝒥

 f* P₁ ··· f* Pₙ

⊢ f* 𝒥

Type-theoretic transformations preserve derivability.

this is data
of the transformation

CONSERVATIVE TRANSFORMATION

U T
ℬ

f

f* ℬ

▢ℬ e’▢ (f* ℬ) e

start with a
 derivable boundary

act on it with f to get
 a derivable boundary

if it can be (derivably)
filled with a headThe original could also

be filled (derivably)

THE ESSENCE OF ELABORATION

S T

r

ℓstandard type theory finitary type theory

elaboration map

retrogression
transformation
(conservative)

(kernel) (economic)

ELABORATION MAP

… such that r* (Γ’ ⊢𝒥’) = Γ ⊢𝒥.

S T

𝒟

Γ ⊢𝒥

r

ℓ

Γ’ ⊢𝒥’

Elaboration map
takes a derivation!

 ℓ is a section of r.

Side note:
elaboration map
 works uniformly

 on contexts
and boundaries
ℓ(Γ’, ℬ’, 𝒟)

Elaboration map
preserves derivability.

THE ESSENCE OF ELABORATION

S T

r

ℓstandard type theory finitary type theory

elaboration map

retrogression
transformation
(conservative)

(kernel) (economic)

S T
r

ℓ

Retrogression transformation is

surjective on derivable judgements.

S T
r

ℓ

Elaboration map is unique

 up-to judgemental equality.

𝒟

Γ ⊢e : A

Γ’ ⊢ e’ ≡ ℓ(𝒟) : A’

Another
elaboration
candidate

Elaboration map satisfies the
following universal property:

UNIVERSAL PROPERTY

S1

T
ℓ1

f

S2

ℓ2

r2r1

ℓf
r2 !"#"$"%&

f is conservative and unique
up-to judgemental equality.

For every finitary type theory T there exists a
standard type theory S with a retrogression
transformation r : S → T and elaboration map ℓ : T → S .

AN ELABORATION THEOREM

Every finitary type theory has “an elaboration”.

For every specific object rule 𝑅𝑖 =

introduce a symbol S_(i, 𝑅𝑖).

PROOF IDEA
(Elaboration theorem)

P₁ ··· Pₙ
⊢ ℬ e▢

Retrogression transformation r : S_(i, 𝑅𝑖) ⟼ e
(syntactic part)

i is the index of the rule
in the signature

Specific rules of standard type theory S:

PROOF IDEA
(Elaboration theorem)

Specific object rules of T

Specific equality rules of T

Symbol rules in S

Specific equality rules in S

+ close under derivability

Do this inductively on the ordering of rules.

Define elaboration map inductively.

PROOF IDEA
(Elaboration theorem)

Prove desired properties of retrogression transformation
(conservativity, type-theoretic transformation) and of elaboration
map (section, preserves derivability).

For every finitary type theory T there exists a
standard type theory S with a retrogression
transformation r : S → T and elaboration map ℓ : T → S .

AN ELABORATION THEOREM

But S has a loooot of specific equality rules!

Recall: universal property

ELABORATOR: ALGORITHM

Elaborator: an algorithm
takes : judgement J
outputs: a derivable elaborated judgement J’ if it exists,
 or reports there is none

ELABORATOR

in finitary type theory
* in equation-free

meta context

in standard type theory

An elaborator, if it exists, is computable for our chosen type theory.

* strongly derivable

Type-checking:

Check that a term a has type A.

Check that the head a fits the boundary ▢ : A.

 CHECKING

Equality-checking:

Check that A ≡ B (or a ≡ b : A).

Check that the head ★ fits the boundary A ≡ B by ▢ (or a ≡ b : A by ▢).

Checking:

 Check that the head e fits the boundary ℬ to get the judgement ℬ e .▢

Derivable boundary!
* in equation-free

meta context

T has an elaborator if and only if T has decidable
(judgement) checking.

EXISTENCE OF ELABORATOR

Elaborator is the most general checking algorithm for T,
if any exists.

If a standard type theory has decidable equality
checking, then it has decidable checking.

If a finitary type theory has decidable (equality)
checking, so does its elaborated standard type
theory.

Note: the converse does not hold!

THE ESSENCE OF ELABORATION

S T

r

ℓstandard type theory finitary type theory

elaboration map

retrogression
transformation
(conservative)

(kernel) (economic)

Universal property

Elaboration theorem
(every economic
theory can be
elaborated)

We have an example of a type theory such that:
(a) Checking is semidecidable.
(b) Equality checking is decidable.
(c) Checking is not decidable.

𝐷 ⊆ ℕ × ℕ a computable subset, such that

𝜋₁(𝐷) = { n ∈ ℕ | ∃ m ∈ ℕ. (n, m) ∈ 𝐷} is semidecidable, not computable.

A signature is given by (A_n : Type)_n ∈ ℕ

Rules: for every (n, m) ∈ 𝐷 R_(n, m) =

⊢ A_n type

Derivable boundary [] ⊢ ▢ type

Check if [] ⊢ A_n type is derivable?

